
Computer Communications 62 (2015) 34–46
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
Congestion-aware adaptive forwarding in datacenter networks
http://dx.doi.org/10.1016/j.comcom.2015.01.020
0140-3664/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Office 738, 3rd Teaching Building, Beijing University
of Posts and Telecommunications, 100876, China.

E-mail addresses: jiaozhang@bupt.edu.cn (J. Zhang), renfy@csnet1.cs.tsinghua.
edu.cn (F. Ren), htao@bupt.edu.cn (T. Huang), tangli@csnet1.cs.tsinghua.edu.cn
(L. Tang), liuyj@chinaunicom.cn (Y. Liu).

1 Bisection bandwidth denotes the minimal total bandwidth of the links to be
removed to partition a network into two parts of equal size [3].
Jiao Zhang a,b,⇑, Fengyuan Ren c, Tao Huang a, Li Tang c, Yunjie Liu a

a State Key Laboratory of Networking and Switching Technology, BUPT, China
b School of Information and Communication Engineering, BUPT, China
c Dept. of Computer Science and Technology, Tsinghua University, China
a r t i c l e i n f o

Article history:
Received 20 June 2014
Received in revised form 24 January 2015
Accepted 28 January 2015
Available online 13 February 2015

Keywords:
Datacenters
Adaptive forwarding
Goodput
a b s t r a c t

Datacenters employ the scale-out model to achieve scalability. This model requires parallelism in the
underlying workload. Therefore, high bisection bandwidth is required to support intensive communica-
tions between servers. Several new datacenter architectures have been designed to provide redundant
bandwidth. Currently, it is critical to design a mechanism to efficiently utilize the abundant bandwidth.
In this paper, we propose a distributed Congestion-Aware Adaptive foRwording (CAAR) protocol to bal-
ance traffic load only depending on the local queue length information. CAAR allows flows to select
under-utilized paths to forward packets. It is theoretically proved to be stable if the arrival rates are
within the network throughput region. Simulation results under diverse datacenter topologies and com-
munication patterns validate that CAAR achieves higher aggregate goodput compared with random and
static routing protocols.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most datacenters employ the scale-out model to achieve scala-
bility [1]. One task is usually completed by many servers together
to achieve higher performance. It is stated that 80% of the services
in datacenters require 10–100 servers to cooperate and 20%
require more than 100 servers [2]. Therefore, intensive communi-
cations between servers exist in datacenter networks. Several
architectures with high bisection bandwidth1 have been designed
to provide the bandwidth resource required by the intensive com-
munications [4,5,3]. However, how to efficiently use the bandwidth
resource is still an open problem.

Unbalanced traffic load across different links results in ineffi-
cient bandwidth utilization. It is possible that several paths are con-
gested while some others are under-utilized or even idle. Such
situation will lead to unfairness among different flows. Flows along
under-utilized paths will finish earlier than other flows with the
same flow size but along congested paths. Since a lot of services
are cooperated by many servers together, the response time is
decided by the slowest flow. In such kind of services, it is desirable
that a set of flows are finished near the same time. For example, in
the Partition/Aggregation workflow [6–8], the aggregators need to
collect all the results from the lower-level workers and then gener-
ate the final results. Therefore, the latency of the final result will be
dragged by the slowest flow, or the quality of the result degrades
without aggregating the results sent from the slow workers.

There are mainly two research directions to utilize the redun-
dant bandwidth in datacenters. One is designing multipath trans-
port layer protocols. The typical work of this type is MPTCP [9].
MPTCP utilizes redundant bandwidth by splitting a flow into mul-
tiple subflows. Each subflow adjusts its own congestion window.
However, it is an end-to-end protocol and thus can only response
to congestion on the magnitude of Round Trip Time (RTT). While
most of flows have quite short length in datacenters [7].
Therefore, balancing load across multiple paths at the transport
layer is not fast enough.

The other direction is employing multipath forwarding proto-
cols. Hop-by-hop forwarding mechanisms have the potential
ability to quickly shift traffic bursts from congested paths to
under-utilized ones and thus fully utilize the redundant band-
width. Some work has been done to balance load in datacenters.
ECMP [10] is a widely known flow-level random forwarding proto-
col that could utilize multipath bandwidth. However, since flow
sizes are various and communication patterns are diverse in data-
centers, possibly some flows will be randomly routed to some con-
gested links even if there are some other idle links. To overcome
the drawbacks of ECMP, Hedera [11] makes use of the feature that

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.01.020&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2015.01.020
mailto:jiaozhang@bupt.edu.cn
mailto:renfy@csnet1.cs.tsinghua.edu.cn
mailto:renfy@csnet1.cs.tsinghua.edu.cn
mailto:htao@bupt.edu.cn
mailto:tangli@csnet1.cs.tsinghua.edu.cn
mailto:liuyj@chinaunicom.cn
http://dx.doi.org/10.1016/j.comcom.2015.01.020
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

J. Zhang et al. / Computer Communications 62 (2015) 34–46 35
the number of elephant flows in datacenters is small, and employs
a centralized controller to reselect under-utilized paths for the long
flows if they encounter congestion. However, in Hedera, the cen-
tralized controller has to collect flow-level information to find
the elephant flows in real time, which brings large overhead.
Recently, packet-level random forwarding is proposed to reduce
the tail of the flow latency [12]. Since each packet can choose its
own path, traffic load can be well balanced across multiple paths.
However, packet-level random forwarding possibly leads to a lot
of out-of-order packets. Larger memory at the end servers is
required to accommodate the out-of-order packets [12].

In this work, we propose CAAR to purposely forward packets to
balance the traffic with many short bursts across multiple links.
The main idea is that each flow selects the most under-utilized
path. If the selected path becomes congested during transmission,
then the flow will be redirected to another under-utilized path.
CAAR can responsively adapt to the traffic variation in datacenters
and avoid packets reordering when no congestion happens.

Using theoretical analysis, it is proved that CAAR protocol is
stable, and is throughput-optimal in terms of that it can fully uti-
lize the redundant bandwidth. This theoretical result explores
the possibility of making a tradeoff between protocol complexity
and bandwidth utilization.

There are possibly a few out-of-order packets in CAAR since a
flow will change its path if the current path becomes congested.
In datacenters, the traffic is mixed of few long flows and a large
number of short flows [13]. It is not necessary to redirect short
flows since they can be finished quite quickly, and the probability
of two long flows selecting the same path is quite small. Thus, we
propose CAAR without reordering mechanism which does not rese-
lect paths for flows during their transmission.

We implement both CAAR and CAAR without reordering on the
ns-2 platform, and evaluate their performance in different datacen-
ter topologies, including FatTree [4], VL2 [14], and single-rooted
tree. The results show that CAAR performs much better than static
routing and ECMP. Besides, CAAR without reordering performs
close to CAAR.

The main contributions of this work have threefold.

(1) A congestion-aware adaptive forwarding protocol, CAAR, is
proposed to fully utilize the redundant bandwidth in
datacenters.

(2) Using theoretical analysis, CAAR is proved to be stable and
throughput optimal.

(3) Considering the traffic characteristics, we propose CAAR
without reordering mechanism and compares its perfor-
mance with CAAR, static, and ECMP in various datacenter
topologies.

The remainder of the paper is organized as follows. In Section 2,
the related work and motivation is described. The network model
is presented in Section 3. Section 4 presents the proposed scheme
CAAR in detail. In Section 5, we prove that CAAR is stable when the
arrival traffic is within the throughput region. Section 6 evaluates
the proposed CAAR algorithm through simulations. Finally, the
paper is concluded in Section 7.
2. Related work and motivation

2.1. Related work

Numerous forwarding/routing protocols have been developed
for sorts of networks, including Internet, interconnection networks
and datacenters. Here, some most related work in datacenters are
summarized.
Static routing. Static routing is calculated in advance and keeps
unchanged. In [4], Al-Fares et al. proposed a FAT-tree architecture
for datacenters and designed a deterministic routing for FAT-tree
topology. Guo et al. in [3] also proposed a deterministic source
routing for their DCell architecture. In [15], Yuan et al. theoretically
studied the deterministic routing for FatTree interconnection. They
analyzed the lower bound of the oblivious performance ratio for
different fat-trees and developed optimal deterministic single-path
and multipath routing schemes in terms of oblivious performance
ratio.

Random forwarding. Static routing is simple, but it cannot fully
utilize the redundant links in datacenters. Greenberg et al. in
[14] proposed balancing load by randomly spreading traffic across
all the available links without considering any other factors. In
[16], redundant paths are computed and then merged into a set
of VLANs. Each packet is randomly sent to one of the VLANs that
can reach the destination. However, random forwarding cannot
perform well under some communication patterns and flow size
distributions due to its blindness. In DeTail [12], packet-level ran-
domized routing is proposed to reduce the tail of the flow latency.
Traffic load can be well balanced across multiple paths since each
packet can choose its own path. However, large memory at the end
hosts is required to accommodate out-of-order packets [12].

Adaptive forwarding. Adaptive forwarding algorithms make a
tradeoff between static routing and random forwarding. They
employ some local information to change forwarding decisions to
adapt to the traffic variation. The adaptive forwarding mechanisms
can be classified into centralized and decentralized.

Hedera [11], MicroTE [17] and Fastpass [18] are typical central-
ized mechanisms. In Hedera [11]. short flows are randomly for-
warded, while each large flow is assigned a under-utilized path
computed by a heuristic algorithm to balance load. However, to
differentiate whether a flow is large or not, switches need to record
the size of every flow. Besides, the scheduler is fundamentally lim-
ited in its response time since it has to retrieve statistics, comput
routing paths and install them. Whenever a flow’s size exceeds a
threshold or it persists for some time, it is considered to be a large
flow. At last, Hedera assumes exponentially distributed flow sizes
and Poisson arrival, which does not comply with the traffic charac-
teristics of datacenters [19,14]. MicroTE [17] also employs a cen-
tralized controller as Hedera does. The centralized controller is
used to track the predictable traffic between servers connected
with the same ToR switch and route the traffic optimally. The
remaining unpredictable traffic is then routed along weighted
equal-cost multipath routes, where the weights reflect the avail-
able capacity after the predictable traffic has been routed.
Various services are being developed in datacenters. It is difficult
to predict traffic between servers. Also, the latency caused by the
centralized controller [20] could not be neglected. Fastpass [18]
uses a centralized arbiter to determine the time at which each
packet should be transmitted as well as the path to use for that
packet. It mainly focuses on guaranteeing zero-queue. The scalabil-
ity of Fastpass is limited by the centralized arbiter that needs to
deal with all the packets.

Many decentralized dynamic routing algorithms are designed
for ISP, such as MATE [21], FLARE [22], and TeXCP [23]. MATE
[21] converges slowly and works on the premise of knowing a glo-
bal network information [23]. TeXCP [23] works in the granularity
of a packet rather than a flow [24], which might lead to lots of
packets reordering. FLARE [22] mainly solves the reordering prob-
lem when splitting a flow across multiple paths. It measures the
delay of each path and set the maximum delay difference between
the parallel paths as a threshold. Only if the interval of two packets
exceeds the threshold, they can be transmitted along different
paths. Thus, the packet-reordering problem can be avoided.
However, since it is difficult to exactly measure the path delay of

Fig. 2. Model of datacenter networks.

36 J. Zhang et al. / Computer Communications 62 (2015) 34–46
data center networks that is in the granularity of microseconds,
FLARE is not proper for data centers. However, they are not proper
for data center networks. There are also some distributed dynamic
routing schemes designed for data center networks, such as DARD
[24]. However, DARD [24] is a host-based dynamic forwarding
scheme proposed for data center networks. In DARD, every end
host requires to monitor the states of all paths to other hosts,
which will cause large overhead especially in large data center net-
works. DiFS [25] states that switch-based dynamic routing mecha-
nism is more proper for data center networks and proposed a
dynamic forwarding mechanism by modifying the function of
switches. However, DiFS needs to count the transmitting bytes of
each flow, which will incur much overhead. The author states that
OpenSketch can be used to reduce the cost of measurement. Yet
OpenSketch is based on the centralized controller of SDN.

2.2. Motivation

Static routing fails to efficiently utilize the rich bandwidth in
datacenters. With respect to random forwarding, whether it can
well balance load will be affected by many factors, such as network
topology, communication pattern and the distribution of flow
sizes. Even the random forwarding, Valiant Load Balancing (VLB),
which is similar to ECMP, is customized for VL2. It could not per-
form well under some traffic patterns and flow size distributions.

Fig. 1 illustrates a partial topology, which likely appears in some
datacenters, such as VL2. Assume that under a communication pat-
tern, six flows pass through switch A, including four flows with
destination D1 denoted by solid lines and two flows with destina-
tion D2 denoted by dashed lines. First, assume that all flows have
the same length. If a flow-level forwarding algorithm is employed,
the path of each flow will be determined by its first packet. Fig. 1(a)
shows a possible spatial distribution under the control of a random
forwarding protocol. For the four solid flows, they have two
options for next hops, i.e., B and C. Statistically, two of the solid
flows will select B and the other two select C. Similarly, since there
are two next hops, C and D, for dashed flows, one of them will
select C and the other select D. If the capacity of each path is P
and the rate of each flow is P2, then link (A,C) will suffer congestion
and drop some packets, while link (A,D) is under-utilized. This sim-
ple example indicates that generally random forwarding mecha-
nisms could not evenly balance traffic load under asymmetric
communication pattern, namely, the number of flows with differ-
ent destinations is different. The main reason is that the forward-
ing of different flows is somewhat blindfold. If some information
reflecting networks state can be collected, and a new arrival flow
is transmitted to the next hop with the minimum load as shown
in Fig. 1(b), then the traffic can be evenly distributed across multi-
ple links. Therefore, the goodput can be improved and the loss ratio
will be reduced.

Second, even if the communication pattern is symmetric, such
as all-to-all communication, different flow sizes will impose a
negative impact on the random forwarding. Statistically, under
Fig. 1. Motivation of designing ada
symmetric communication patterns, the number of flows passing
each switch is equal. However, if the random forwarding mecha-
nism is flow-based, different flow size will lead to unbalanced traf-
fic distribution.

In summary, random forwarding can be easily implemented,
but it is somewhat blindfold. Fully utilizing redundant bandwidth
plays a great role in improving the user experience of cloud ser-
vices. It is necessary to explore whether we can make a tradeoff
between protocol complexity and bandwidth utilization.
3. Network model

Datacenters are comprised of severs, links and switches.
Switches and servers are modeled as buffers. Hence, a datacenter
can be modeled as a graph with S buffers (switches or servers)
and N links as shown in Fig. 2. The set of buffers and links are
denoted as B and N respectively, jBj ¼ S and jN j ¼ N. Each buffer
can accommodate at most B packets. kjðtÞ denotes the instanta-
neous rate at which external traffic comes to buffer j. It equals 0
if buffer j has no external arrivals.

A buffer can be served by several links simultaneously. Define
Rj as the set of neighbors of buffer j, Rd

j as the set of next hops
of packets destined for d at buffer j. Sj is the set of links which
can serve buffer j. The packets with destination d in buffer j can
be directed to any buffer in Rd

j . A forwarding policy determines

to which buffer inRd
j the packets in buffer j are routed. There exists

a sequence of buffers starting from buffer j through which the traf-
fic in buffer j can be routed to the destination server, which is indi-
cated by buffer 0. The service rate of each link is r. Let li

j be the
fraction of time that link i spends serving buffer j and QjðtÞ be
the length of buffer j at time t.

The proposed CAAR scheme operates in slotted time. Slots are
normalized to integral units. Let T be the slot length. Time slot n
refers to the time interval ðnT; ðnþ 1ÞT�;n 2 f0;1;2; . . .g. If link i
is assigned to transfer the traffic in buffer j to k continuously dur-
ing a time slot n, then an amount of traffic rT will be transmitted
ptive routing for datacenters.

Table 1
The variables most-used in this paper.

Var Definition

QjðtÞ The queue length of buffer j at time t
B Buffer size
Sj The set of links which can server buffer j
kjðtÞ The external arrival rates at which the traffic comes to buffer j
Rj The set of neighbors of buffer j

Rd
j

The set of next hops of packets destined for d at buffer j

li
j

The fraction of time that link i spends serving buffer j

AjðnÞ The amount of external traffic to buffer j during time slot n

Wi
jkðnÞ The amount of traffic transferred from buffer j to buffer k

aj The long-run external arrival rate to buffer j
M1 The congestion threshold of the queue length difference between

two adjacent buffers
M2 The congestion threshold of the queue length of a buffer.

J. Zhang et al. / Computer Communications 62 (2015) 34–46 37
from buffer j to k. Denote Wi
jkðnÞ as the amount of traffic trans-

ferred from buffer j to buffer k by link i during time slot n, and
AjðnÞ as the amount of external coming traffic to buffer j during
time slot n. Then the dynamic of queue length in buffer j is as
follows:

Q jððnþ 1ÞTÞ ¼ Q jðnTÞ þ AjðnÞ þ
X
l:j2Rl

X
i2Sj

Wi
ljðnÞ

�
X
k2Rj

X
i2Sj

Wi
jkðnÞ; j 2 B ð1Þ

The definition of variables are summarized in Table 1 for easy
reference.
4. Adaptive forwarding

In this section, the proposed CAAR scheme will be described in
detail. We assume that multipaths are pre-configured in datacen-
ters. Each flow selects the next hop with the minimum queue
length.

4.1. Forwarding packets

Under CAAR, each switch makes forwarding decisions based on
its neighbors’ queue length, whose value is updated in each time
slot. Consider a packet p destined for d during time slot n. If its flow
identifier is new, then it will be transmitted to the buffer �kdðnTÞ
with the minimum queue length in Rd

j .

�kdðnTÞ ¼ arg min
k2Rd

j

QkðnTÞ ð2Þ

This new flow will be recorded in the flow table in buffer j.
If packet p belongs to an old flow, then usually it will be sent to

the preassigned next hop to prevent packets from reordering.
However, when any one of the two following situations happen,

� The queue length of buffer j;QjðtÞ, exceeds a threshold M2,
namely, congestion is going to occur in buffer j.
� The difference of queue length between buffer j and the preas-

signed buffer h is not larger than �M1, which implies that the
packets from buffer j to buffer h will possibly overwhelm h.

To keep the network stable, all packets in buffer j will be sent to
the next hop �kdðtÞ which has the minimum queue length.

With regard to the flow identification, the end system can use a
hashed value of the five tuples of a flow to generate the flow ID.
4.2. Local caching rule

As stated above, for a packet destined for d with a preassigned
next hop h in buffer j, if Q jðtÞ � Q hðtÞ 6 �M1, packets will be for-

warded to �kd to avoid packets dropping in buffer h. However, if
even QjðtÞ � Q �kdðtÞðtÞ 6 �M1, the packets from buffer j will likely

overwhelm buffer �kd with the lightest load. In this situation, to
alleviate potential congestion in buffer �kd and avoid packet loss,
the best choice is that buffer j temporarily caches packets, which
is referred to as Local Caching Rule.

4.3. Signaling

A buffer needs to know the queue length of its possible next
hops to make forwarding decisions. How to get the information
depends on the queue mechanism of switches. The queue mecha-
nisms of current switches mainly include three classes: input
queuing, output queuing and shared buffering [26]. If switches
use output queuing, which is widely employed since it can easily
support weighted fair queuing (WFQ)-based packet scheduling
[27]. Then the switch can get the queue length in real time without
consuming additional bandwidth. Otherwise, a signaling message
is needed to update the queue length information of neighbors.
Since the proposed CAAR scheme operates in slotted time, the
queue length information will be updated every time slot T. But
if the relative difference between current queue length and the
length in last slot is not larger than a threshold Dð0 < D < 1Þ, the
queue length will not be updated to reduce overhead. At worst, if
every time slot T, a switch sends its queue length to all of its neigh-
bors, then each link needs to transmit two signaling packets every
time slot T. Since the signaling packet do not need to deliver any
payload, we could multiplex some packet header field to carry
the queue length information. The size of the ethernet frame has
to be larger than 64 KB. Thus, the signaling overhead is at most
64 KB�2

T�C . The link capacity between a ToR (Top of Rack) switch and
a server is usually 1 Gbps. But the link capacity between switches
is generally 10 Gbps or even higher. Thus, if the signaling period is
500 us, then the overhead is at most 64 KB�8�2

500 us�10 Gbs ¼ 0:02%, which is
acceptable.

4.4. Procedure of CAAR

The basic components included in CAAR have been introduced
as above. To present a coherent procedure of CAAR, its pseudo-
codes are illustrated in Figs. 3 and 4, respectively. In summary,
CAAR includes packet forwarding module and message updating
module. Fig. 3 presents packet forwarding procedure, line 2 is
the local caching rule. Lines 4 and 5 aim to avoid potential packets
loss when QjðnTÞ > M2. Lines 8–15 are for old flows while lines 16–
18 are for new flows. Fig. 4 depicts message updating, which pro-
vides two functions: UpdateTable() and UpdateLength(). In
UpdateTable(), Lines 1–4 aim to update the neighbor ID with the
minimum queue length. Lines 5–9 judge whether buffer j is about
to be congested. And Lines 10–12 delete the out-dated routing
items. In UpdateLength(), if the relative difference between current
queue length and that in last slot exceeds a threshold D, then the
buffer will send update messages to its neighbors.

4.5. CAAR Without reordering

In CAAR, a flow will change its path if the current path becomes
congested, which possibly lead to out-of-order packets. The traffic
measurement results show that the traffic in datacenters is mixed
of a much small proportion of elephant flow and a large proportion
of mice flows [28,19]. It is not quite necessary to redirect the mice

Fig. 3. Packet forwarding algorithm at buffer j in CAAR.

Fig. 4. Message update algorithm at buffer j in CAAR.

38 J. Zhang et al. / Computer Communications 62 (2015) 34–46
flows since they can be finished quickly. For example, queries and
their responses take only 1.6 KB to 2 KB data [7]. They can be fin-
ished in one or two RTTs. If two long flows select the same path,
Fig. 5. The communication procedure between server
then congestion will happen [11]. However, only one percent of
flows belong to long flows in datacenters [13]. Therefore, the
possibility that two long flows select the same path is quite small.
Based on this investigation, we propose CAAR without reordering
mechanism and evaluate its performance in the evaluation section.

4.6. An illustrative example

In this subsection, we use a simple example shown in Fig. 5 to
intuitively illustrates how CAAR works. Server 1 denotes the source
and server 2 is the destination. The lines with arrow represent the
pre-calculated multipaths which only include the paths with the
same number of hops. The hollow packet belongs to a recorded
flow, whose identifier is 1 and the solid packet belongs to a new
flow. The preassigned next hop for packet of flow 1 has been
recorded in the routing table in each buffer. Let M1 ¼ 3 and
M2 ¼ 8. Now server 1 generates a hollow packet and a solid packet
respectively. Considering the hollow packet first, buffer a1 will
select the next hop a2 for the hollow packet according to the rout-
ing table since Qa1

ðtÞ is not bigger than M2 and
Qa1
ðtÞ � Q a2

ðtÞ ¼ 4� 5 ¼ �1 > �3. However, at buffer a2, since
the queue length of the preassigned next buffer 1 is too large such
that Qa2

ðtÞ � Q b1
ðtÞ ¼ 5� 8 ¼ �3; a2 will select buffer �kd ¼ b2 as

the next hop and change the corresponding routing items, then
the next hollow packet will select buffer b2 as its next hop.
While in buffer b2, the only next hop is c1, however the queue
length of buffer c1 is too large such that Qb2

ðtÞ � Q c1
ðtÞ ¼

2� 7 ¼ �5 < �3. Hence, buffer b2 will wait for a time slot accord-
ing to the local caching rule. And at the next time slot, if the queue
length of buffer c1 is still very large such that Q 2ðtÞ � Qc1

ðtÞ 6 �3,
then it waits for another time slot again until the queue length in
buffer c1 becomes smaller such that Q 2ðtÞ � Qc1

ðtÞ > �3. On the
other hand, the solid packet belonging to a new flow will be for-
warded to the buffer with the minimum queue length in Rd

j .

4.7. A word on complexity

Our CAAR does not need to compute the traffic distribution
ratio of each link as some centralized routing algorithms do, it just
selects the next hop with the minimum queue length from the next
hop options in real time. Thus, its time complexity is rather low. In
Fig. 4, the time complexity of Line 1 is OðjRjjÞ; jRjj is the cardinality
of set Rj. Lines 2–9 take Oð1Þ. And lines 10–12 take jTjj,
where Tj represents the flow table at buffer j and jTjj is the
number of items in table Tj. Hence, the time complexity
of the module UpdateTable(Table ft) takes OðmaxfjRjj; jTjjgÞ. And

UpdateLength() takes Oð1Þ runtime, but need OðjRj j�Sp

T Þ bandwidth,
where Sp is the updating message length. With respect to the
packet forwarding module in Fig. 3, the time complexity depends
on the algorithm of looking up routing table. At worst it is OðjTjjÞ.
1 and server 2 under the proposed scheme CAAR.

J. Zhang et al. / Computer Communications 62 (2015) 34–46 39
5. Theoretical analysis

Stability is an important feature desired by the decentralized
CAAR scheme. In this section, we will first introduce some def-
initions and present some constraint conditions, and then theoreti-
cally prove that the proposed CAAR is stable.

5.1. Definition and constraint

Definition 1. The network is stable under a policy P if the sum of
the number of backlogged packets in the network has an upper
bound Qmax, that is

lim sup
t!þ1

XB

j¼1

QjðtÞ 6 Q max ð3Þ

where Qmax may only depend on the service rate r, the arrival rates
~a ¼ ðajÞj2B , and the burst parameter~b ¼ ðbjÞj2B , but not on the initial
condition.

According to this stability criterion, if a datacenter is stable
under the control of our CAAR, the queue length in all switch buf-
fers is bounded, which is beneficial to avoiding packet losses.

Definition 2. All the external arrival matrices ~kðtÞ ¼ ðkjðtÞÞj2B
under which the network can be stable, compose the network
throughput region K.

Similar definition of throughput region can be seen in [29]. The
throughput region can be formalized as the set of the external
arrival rates which satisfy the following Constraint 1.

Constraint 1: Let f jkðj; k 2 BÞ be the long-run average rate with
which the traffic in buffer j is transferred to buffer k. We say
~kðtÞ 2 K if there exists f jk such that the following conditions

hold:

f jk P 0; f jj ¼ 0; for all j; k 2 B ð4Þ

aj þ
X
l:j2Rl

f lj ¼
X
k2Rj

f jk; for all j 2 B ð5Þ

X
k2Rj

f jk 6
X
i2Sj

li
jr; for all j 2 B; i 2 N ð6Þ

The conditions above are explained as follows:

� Eq. (4) is the flow efficiency constraint. The amount of traffic
should not be negative and a buffer will not send packets to
itself.
� Eq. (5) is the flow conservation constraint, which states that the

sum of the external arrival traffic and the incoming traffic to
buffer j from other buffers equals the outgoing traffic from buf-
fer j.
� Eq. (6) is the capacity constraint. li

j represents the time fraction

link i spends for buffer j, then rli
j denotes the traffic transmitted

by link i from buffer j. Obviously, the outgoing traffic from buf-
fer j should not be larger than the service all the links i 2 Sj

provide.

Obviously, if given the external traffic ~kðtÞ, the network can be
stabilized, then the above three conditions: flow efficiency, flow
conservation and capacity constraint must satisfy, that is, there
must exist f jk such that the above conditions hold.

Constraint 2: We consider a fluid model for the external arrivals.
During the interval ½t1; t2�, the sum of the traffic coming into buffer
j is
R t2

t1
kjðtÞdt. Assume there are nonnegative numbers aj; bj, j 2 B,

such that for all 0 6 t1 6 t2, we haveZ t2

t1

kjðtÞdt 6 ajðt2 � t1Þ þ bj ð7Þ

Actually this is a burst constraint for input traffic. Besides,
assume that the traffic enters into buffer j with a long-run average
rate aj.

lim
t!þ1

1
t

Z t

0
kjðt0Þdt0 ¼ aj; j 2 B ð8Þ

Note that as long as the instantaneous rate of the external arri-
val is finite, then it will satisfy the burst constraint. The measure-
ment results presented in [19] indicate that the traffic in
datacenters exhibits on–off pattern and there is many short-lived
bursts, but the instantaneous rate will not be infinite. Hence, the
burst constraint of the fluid model is reasonable.

5.2. Stability of CAAR

Before proving our CAAR mechanism can guarantee that the

network is stable given any~kðtÞ that satisfies Constraint 1, we first
introduce 3 lemmas.

Lemma 1. For nonnegative T, if the system satisfies that whenPB
j¼1Q2

j ðnTÞ > Qm (Qm is a constant value),

XB

j¼1

Q 2
j ððnþ 1ÞTÞ �

XB

j¼1

Q 2
j ðnTÞ < �� ð9Þ

Then the system is stable.
Proof. See Appendix A. h
Lemma 2. There is a constant c > 0 which depends only on the topol-
ogy of the network so that

max
j2B;k2Rd

j

fQjðtÞ � QkðtÞgP c

ffiXS

j¼1
Q 2

j ðtÞ
r

ð10Þ
Proof. See Appendix B. h
Lemma 3. For buffer j which satisfies Q jðnTÞ > M2 and
maxk2Rd

j
fQ jðnTÞ � Q kðnTÞg > 2MT �M1, where M is the

maximum rate with which any queue may vary. Let
I ¼ fðj; �kdÞjd is the destination of sent packets during time slot
n at buffer jg. We have for buffer j

X
k2Rj

X
i2I

Wi
jkðnÞfQjðnTÞ � Q kðnTÞgP rcT

ffiXS

j¼1
Q jðtÞ2

r

Proof. See Appendix C. h

We compute the equation
PS

j¼1Q 2
j ððnþ 1ÞTÞ �

PS
j¼1Q 2

j ðnTÞ
according to the queue dynamics in Eq. (1) and the proposed algo-

rithm AR, obtaining that 9Qm, when Q > Qm;
PS

j¼1Q2
j ððnþ 1ÞTÞ�PS

j¼1Q 2
j ðnTÞ < ��, that is, the data center network controlled by

CAAR is stable.

Theorem 1. If the arrival rates are within the throughput region, then
the system is stable under AR.

 0.4

 0.6

 0.8

 1

C
D

F

40 J. Zhang et al. / Computer Communications 62 (2015) 34–46
Proof. See Appendix D. h

If a network can keep stable under any possible injected traffic
rates that are with in the throughput region K, then we can infer
that the network is throughput-optimal.

Note that in our theoretical proof, we assume that a switch can
obtain accurate queue length information. However, in practice,
there maybe some queue length deviation between the measured
queue length value and the real value. Intuitively, if the arrival traf-
fic still obeys the traffic model described in Constraint 2, the proof
result is still valid. Of course, to prove the performance of CAAR
with deviated queue length information, more attempts and strict
proof are required to be made. This is also a possible future direc-
tion of CAAR.

6. Evaluation

In this section, the performance of CAAR and CAAR without
reordering will be compared with static routing and ECMP for-
warding mechanisms.

6.1. Simulation setup

We implement the protocols on the NS2 platform. We extend
the Class Node in NS2, including Routing module, Classifier,
Queue and so on, to a layer 2 switch, and properly implement
CAAR with or without reordering, oblivious random algorithm
ECMP and static routing algorithms. The transport protocol in all
servers is configured as TCP SACK1. On one hand, the rate of incom-
ing traffic is adjusted by the in-built flow regulation mechanism in
TCP to approach to the network throughput region. On the other
hand, a unbiased comparison can be conducted since TCP is also
employed in the experiments of evaluating the random forwarding
performance in [14].

Next, we will describe the topology, communication pattern,
traffic generation and parameter setting in our simulations in
detail.

(1) Topology: VL2 architecture is an example of a folded Clos
network as shown in Fig. 6. This fabric is configured in simulations
to eliminate the possible negative impact of other topology on the
performance of oblivious random forwarding. There is a capacity
gap between the server line cards and intermediate network links
in VL2. In the simulation, the rate of server line cards is 1 Gbps and
the rate of intermediate network links is 10 Gbps. Each ToR con-
nects to 20 servers and 2 Aggregation switches, and each
Aggregation switch connects to all the Intermediate switches.
Multipaths that include all the paths for each pair of servers are
preconfigured. CAAR only selects one of them to forward packets.

We will first compare the performance of CAAR with the other
two protocols with VL2 in detail. In addition, to prove that the
Fig. 6. VL2 topology with NI Intermediate Switches, NA Aggregate Switches and NT

ToR Switches.
performance of our CAAR is independent on topology, we also con-
duct simulations with Tree and Fat-tree topologies in Section 6.2.2.

(2) Communication pattern: The simulation experiments are
conducted under three types of communication patterns:

� Stride(x) pattern: Some servers i transmit packets to the servers
xþ i.
� Hot spot pattern: Some servers transmit traffic to the same

destination.
� Random pattern: A server generates some flows and sends each

flow to a random destination.

(3) Traffic generation: To make the simulation results more con-
vinced, except from long flows, we also generate flows with ran-
dom size based on the measurement results in real datacenters
in [14]. The sizes of 99% of flows are smaller than 100 MB. We dis-
cretize the flow size distribution as shown in Fig. 7. In our sim-
ulations, a uniformly random value f 2 U½0;1� is generated,
according to the value of f, we can get the corresponding flow size.
For example, if 0:6 < f 6 0:8, a flow with flow size 10 KB will be
generated.

With respect to the number of flows, to keep fair when compar-
ing the goodput and loss ratio under different protocols, we gener-
ated the same number of flows for all the algorithms. If one flow
ends, another flow will be generated.

(4) Parameter setting: In default, the switch buffer size B is 50
packets. The key parameters in our algorithm, M1;M2, is set to
0.5 B and 0.9 B. The parameters of our algorithm in simulations
are summarized in Table 2.
6.2. Results

(1) Small scale topology: First, the proposed CAAR algorithm is
validated in a small topology with NI ¼ 5;NA ¼ 10;NT ¼ 10.

Stride(100) communication pattern: Let servers i 2 ½0;39� send
packets to servers 100þ i. To be fair to all the four mechanisms,
we first let each sender generate a long flow. In this way, the exter-
nal traffic is absolutely equal for each mechanism. Furthermore, to
avoid all the flows starting at the same time, which is a impractical
 0

 0.2

 1 100 10000 1e+06 1e+08 1e+10 1e+12

Flow Size (Bytes)

Flow Size CDF

Fig. 7. The distribution of flow size in our simulation.

Table 2
Parameters setting.

Parameter Value Parameter Value

Pkt Size 1.4 KB B 50 packets
M1 0.5 B M2 0.9 B
D 0.05 B T 500 us

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 30 40 50 60 70 80 90 100

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp
s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 10. Goodput under Hot spot communication pattern.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 20 30 40 50 60 70 80 90 100

Lo
ss

 r
at

io

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

J. Zhang et al. / Computer Communications 62 (2015) 34–46 41
case, we let each flow orderly starts with interval 1 s. Hence, the
last flows should be active at 39 s. Fig. 8 shows the comparison
of the goodput under the four protocols. All the goodput values
keep increasing before 45 s and become stable after that. The pro-
posed CAAR algorithm with reordering performs approximately 9%
better than CAAR without reordering. The goodput of CAAR is 20%
larger than ECMP and about 33% larger than Static routing. Note
that the total goodput for 40 flows in our CAAR is approximately
36 Gbps, which indicates CAAR can efficiently utilize the
bandwidth.

To further compare the performance under more practical traf-
fic patterns. We randomize each flow size according to Fig. 7. When
a flow ends, a new flow with random size becomes active. Hence,
the external traffic will be nearly identical for all the four routing
protocols. Note that all the next simulations generate flows with
random flow size. Fig. 9 shows the aggregate goodput results. We
can see that CAAR with reordering still performs better than
CAAR without reordering, ECMP and static routing protocols. But
the goodput fluctuates. The reason is that the flow size is random.
When a flow finishes, a new flow will be generated and begin with
TCP slow start.

Hot spot communication pattern: Servers 0–80 sends a flow with
random size to server 81. Figs. 10 and 11 shows the goodput and
loss ratio results, respectively. The goodput of the four protocols
is about 0.8 Gbps since the capacity of the bottleneck link, which
connects to server 81, is 1 Gbps. ECMP and static routing have rela-
tively higher goodput than CAAR. This is because CAAR will tem-
porarily cache packets to avoid packet loss when congestion
happens, which possibly wastes some bandwidth. While static
and ECMP routing inject packets into the bottleneck link cease-
lessly to fill the bottleneck link. Besides, in hot spot communication
pattern, the single bottleneck link connecting to the receiver limits
 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 30 40 50 60 70 80 90 100

A
gg

re
ga

tio
n

go
od

pu
t (

G
bp

s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 8. Goodput under Stride communication pattern with fixed flow size.

 18

 20

 22

 24

 26

 28

 30

 32

 34

 30 40 50 60 70 80 90 100

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp
s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 9. Goodput under Stride communication pattern with random flow size.

Fig. 11. Loss ratio under Hot spot communication pattern.
the aggregated throughput. The advantage of CAAR, better balanc-
ing traffic across multiple links, cannot be exhibited in this com-
munication pattern. But with respect to loss ratio, the static and
random forwarding both have about 7% loss ratio as shown in
Fig. 11. While CAAR has no packet dropping, which is quite impor-
tant for applications that are sensitive to packet loss.

Random communication pattern: Fig. 12 illustrates the goodput
in random communication pattern. The number of flows is 50.
Since only one server generates traffic, the NIC of server becomes
the bottleneck. We can observe that the goodput under the four
protocols is about 0.93 Gbps, close to.

1 Gbps. And there is small fluctuation since the flow size is ran-
dom. Under this scenario, the sender link is the bottleneck and the
goodput is quite relevant to the upper layer protocol.
 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 30 40 50 60 70 80 90

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp
s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 12. Goodput under random communication pattern.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

gg
re

ga
te

 G
oo

dp
ut

42 J. Zhang et al. / Computer Communications 62 (2015) 34–46
(2) Large scale topology: To validate the scalability of the pro-
posed CAAR, we conduct the stride scenario under the topology
with NI ¼ 25;NA ¼ 40;NT ¼ 100, which can support 2000 servers
and the topology with NI ¼ 10;NA ¼ 100;NT ¼ 500 that can sup-
port 10,000 servers. The goodput results are shown in Figs. 13
and 14. Similar to the results in small topology, the advantage of
CAAR is still obvious, which indicates that our CAAR has good
scalability.
 0.02

 0.03

C
A

A
R

1
C

A
A

R
2

C
A

A
R

3
C

A
A

R
4

C
A

A
R

5
C

A
A

R
6

C
A

A
R

7
C

A
A

R
8

C
A

A
R

9
C

A
A

R
10

A

Fig. 15. Goodput with different parameters.
6.2.1. Impact of parameters
To assess the impact of M1 and M2 on the performance of CAAR,

ten pairs of them are selected as shown in Table 3. We refer to
them as CAAR1–10. Fig. 15 shows the goodput results of them
under the stride scenario with random flow size in small topology.
CAAR1 performs worst and CAAR2-7 perform better than CAAR8-
10. Hence, the goodput will not benefit from too small M2 (Small
M2 indicates that the packets will be forwarded to the buffer with
the minimum queue length even if the current buffer is not con-
gested). Possibly the reason is that small M2 will cause a large
 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90

A
gg

re
ga

tio
n

go
od

pu
t (

G
bp

s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 13. Goodput under random communication pattern in datacenter that can
support 2000 servers.

 15

 20

 25

 30

 35

 40

 30 40 50 60 70 80 90 100

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp
s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 14. Goodput under stride communication pattern in large datacenters that can
support 10 K servers.

Table 3
Parameter pairs.

CAAR# 1 2 3 4 5 6 7 8 9 10

M1
B

0.5 0.5 0.5 0.5 0.5 0.45 0.55 0.6 0.65 0.7
M2
B

0.5 0.6 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9
amount of reordering packets which reduces the TCP performance.
In contrast to CAAR0, larger M1 in CAAR8-10 will reduce the chance
that the recorded flows select new better paths, hence the goodput
is lower than CAAR2-7. Therefore, the parameters in CAAR5-7 are
good choice for implementation of CAAR.

Fig. 16 shows the reordering packets under CAAR1-10 in the
stride scenario with random flow size per second for a flow.
Obviously the number of the normalized reordering packets is very
small, which will introduce little burden to the end system.

Figs. 17 and 18 plot the aggregate goodput and the number of
reordering packets per switch per second with different switch
port buffer sizes, respectively. We can see that as the buffer size
increases, the aggregate goodput of CAAR keeps stable. However,
the number of reordering packets decreases dramatically.
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

C
A

A
R

1
C

A
A

R
2

C
A

A
R

3
C

A
A

R
4

C
A

A
R

5
C

A
A

R
6

C
A

A
R

7
C

A
A

R
8

C
A

A
R

9
C

A
A

R
10

N
or

m
al

iz
ed

 r
eo

rd
er

in
g

pa
ck

et
s

(/
s)

Fig. 16. The reordering packets of one flow every second.

 30

 31

 32

 33

 34

 35

 36

 37

 38

 0 100 200 300 400 500

A
gg

re
ga

te
 G

oo
dp

ut

Switch Buffer Size per Port (pkts)

Fig. 17. The aggregated goodput with different switch buffer size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500N
or

m
al

iz
ed

 r
eo

rd
er

in
g

pa
ck

et
s

(/
s)

Switch Buffer Size per Port (pkts)

Fig. 18. The reordering packets of one flow every second with different switch
buffer size.

 18.7

s)

J. Zhang et al. / Computer Communications 62 (2015) 34–46 43
Especially when the buffer size is equal or larger than 400 packets,
the number of reordering packets equals zero. This is because lar-
ger switch buffer can accommodate more packets. The threshold of
changing the path of a flow increases. Thus, the event of packets
reordering rarely happens.

6.2.2. Other topologies
To evaluate whether our protocol CAAR works well in other

topologies besides from VL2, we conduct simulations in two other
kinds of datacenter topologies. One is multi-rooted tree shown in
Fig. 19, which is widely used in industry. The other one is Fat-tree
(Fig. 20), another new architecture proposed for datacenters except
from VL2. In our simulations, the Tree topology has 3 roots
(intermediate switches), 25 aggregation switches and 50 ToRs.
Fig. 19. Tree topology with multiple roots.

Fig. 20. Fat-tree topology.
There is only one path except from the paths from the aggregation
switches to the intermediate switches. The link capacity of ToR
switches is 1 Gbps. All the aggregation and intermediate switches
have links with 10 Gbps rate.

Fig. 21 shows the goodput results with Tree topology. Servers
(0–39) begin to communicate with the other (100–139) servers
at the start of the simulation. We can see that under the four pro-
tocols, the goodput results are almost the same, approximate
18.6 Gbps. This is because each ToR connects with 20 servers and
each aggregation switch connects with 2 ToRs. Thus, servers (0–
39) will go through the same aggregation switch. The link between
the two ToRs and their connected aggregation switch becomes the
bottleneck. Since each link capacity of the aggregation switch is
10 Gbps, the maximum bandwidth is 20 Gbps. Thus, the aggregate
goodput is about 18.6 Gbps. In static routing, we use the dst%3 to
select the intermediate switch, thus it also achieves almost the
same aggregate bandwidth as the other protocols.

Fig. 22 plots the goodput in a Fat-tree topology. In our sim-
ulations, we let k ¼ 16, that is, the number of ports of each switch
is 16. Half of the 16 ports connect switches in the down layer and
the other half connect with the switches in the up layer. For exam-
ple, each ToR switch connects 8 servers and 8 aggregation
switches. Since Fat-tree aims to achieve high bisection bandwidth
by employing commodity switches. The link bandwidth of all the
switches is 1 Gbps. We let all the servers in the first pod, server
(0–63), communicate with all the servers in the third pod from 0
s. The static routing in our simulations is implemented as follows:
If there are multiple choices, then the switch sends out the packet
with destination i from the ði% k

2Þ-th port. The goodput results in
 18

 18.1

 18.2

 18.3

 18.4

 18.5

 18.6

 0 10 20 30 40 50 60 70 80

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 21. The aggregated goodput with Tree topology.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80

A
gg

re
ga

tio
n

G
oo

dp
ut

 (
G

bp
s)

Time (s)

CAAR
CAAR wo Reorder

ECMP
Static

Fig. 22. The aggregated goodput with Fat-tree topology.

44 J. Zhang et al. / Computer Communications 62 (2015) 34–46
Fig. 22 show that CAAR with reordering achieves the maximum
goodput. ECMP achieves a little lower goodput compared with
CAAR with reordering. And static routing only achieves about
7.7 Gbps. This is because this protocol transmits packets only along
8 paths.

The above results show that CAAR performs well in different
kinds of topologies.

(5) Benchmark Traffic: To evaluate the performance of CAAR
with realistic data center traffic, we generate data center traffic
based on the traffic measurement in [7]. The traffic lasts for
10 min. Totally 12,871 flows are generated, which are consisted
of query flows with 2000 Bytes length and background flows with
1 K–100 MB length. End hosts employ TCP NewReno protocol.

Figs. 23 and 24 shows the average, 95th, 99th and 99.9th per-
centile of the flow competition time for query and background
flows, respectively. We can see that CAAR exhibits dramatic bene-
fits compared with ECMP and Static mechanisms. This is because in
ECMP and Static mechanisms, long flows are possibly transmitted
along the same path and thus cause congestion. This not only leads
to long flow completion time of the corresponding long flows, but
also negatively impact the flow completion time of query flows due
to long queuing delay and packets drops and so on. While CAAR
can effectively avoids the congestion as long as there are under-
utilized paths. Therefore, CAAR dramatically reduces the flow com-
pletion time of query and background flows.
Avg 95th 99th 99.9th
0

0.2

0.4

0.6

0.8

1
200ms→

Query

F
lo

w
 C

om
pl

et
io

n
T

im
e

(m
s)

CAAR
ECMP
Static

Fig. 23. Flow completion time of queries with the benchmark workload.

Avg 95th 99th 99.9th
0

0.5

1

1.5

2

2.5

3

Background

F
lo

w
 C

om
pl

et
io

n
T

im
e

(s
) CAAR

ECMP
Static

Fig. 24. Flow completion time of background flows with the benchmark workload.
7. Conclusions

In this paper, we propose a congestion-aware adaptive routing
scheme, CAAR, to balance traffic across multiple paths in datacen-
ters. CAAR can responsively adapt to bursts and rapidly varying
traffic patterns in datacenters, avoid reordering packets when no
congestion happens, and keep stable. It is decentralized and uses
only local information. It can work well in various communication
patterns. The basic idea of CAAR is to send packets to the next hop
with the lightest load. We define the concept of throughput region
and prove that CAAR can keep the network stable whenever the
arrival rates are in the throughput region. The performance of
CAAR is evaluated on the ns-2 platform. The simulation results
validate that the proposed CAAR algorithm can more efficiently
utilize the redundant bandwidth compared with static and ECMP
protocols.

Acknowledgement

The authors gratefully acknowledge the anonymous reviewers
for their constructive comments. This work is supported in part
by National Basic Research Program of China (973 Program) under
Grant No. 2012CB315803, and National Natural Science
Foundation of China (NSFC) under Grant No. 61225011.

Appendix A. Proof of Lemma 1

Proof. First, let g be the smallest integer such thatPB
j¼1Q2

j ðgTÞ 6 Qmg must exist. Because if
PB

j¼1Q2
j ð0Þ 6 Qm, then

let g ¼ 0. Else if
PB

j¼1Q2
j ð0Þ > Qm, then according to the condition

of this lemma,
PB

j¼1Q2
j ðð0þ 1ÞTÞ <

PB
j¼1Q2

j ð0Þ � �. Iteratively,
there must exist an integer g such that inequalityPB

j¼1Q2
j ðgTÞ 6 Qm satisfies.

From the queue dynamics and burst constraints, we have

XB

j¼1

Qjððnþ 1ÞTÞ 6
XB

j¼1

Q jðnTÞ þ ajT þ bj þ BrT ð11Þ

Hence

XB

j¼1

Q2
j ððnþ 1ÞTÞ 6

XB

j¼1

Q 2
j ðnTÞ þ 2B

ffiXB

j¼1
Q 2

j ðnTÞ
r

ðajT þ bj þ BrTÞ

þ ðajT þ bj þ BrTÞ2 ð12Þ

Define Q ¼ Qm þ 2ðajT þ bj þ rBTÞB
ffiffiffiffiffiffiffi
Qm

p
þ ðajT þ bj þ rBTÞ2, we

can readily prove that
PB

j¼1Q 2
j ðmTÞ 6 Qwhenm P g.

If
PB

j¼1Q2
j ðmTÞ 6 Qm, then according to Eq. (12),PB

j¼1Q2
j ððmþ 1ÞTÞ 6 Q . Else if Qm <

PB
j¼1Q2

j ðmTÞ 6 Q , thenPS
j¼1Q2

j ððmþ 1ÞTÞ �
PS

j¼1Q2
j ðmTÞ < ��. Therefore

PB
j¼1Q2

j

ððmþ 1ÞTÞ 6 Q .
Hence, the system is stable if it satisfies that when

QjðnTÞ > Qm;
PS

j¼1Q2
j ððnþ 1ÞTÞ �

PS
j¼1Q2

j ðnTÞ < ��. h
Appendix B. Proof of Lemma 2

Proof. Consider the buffer j0 with the maximum length, obviously

Qj0
ðtÞP

ffi
ð
PS

j¼1Q2
j ðtÞÞ=S

q
.

There exists a sequence of queues through which the packet
destined for d can be routed to the destination. Define D as the
maximum hops on the routing path. For the packet destined for d

J. Zhang et al. / Computer Communications 62 (2015) 34–46 45
at buffer j0, there exist a sequence j1; j2; . . . ; jn;n < D; jkþ1 2
Rd

jk
; k ¼ 0;1;2; . . . ; ðn� 1Þ such that

Pn�1
k¼0ðQjk

ðtÞ � Qjkþ1
ðtÞÞ ¼

Qj0
ðtÞ. Hence, we can obtain maxk¼0;1;...;n�1ðQjk

ðtÞ � Qjkþ1
ðtÞÞP

Qj0
ðtÞ

D P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS

j¼1
Q2

j ðtÞ
q

D
ffiffi
S
p . Let c ¼ 1

D
ffiffi
S
p , then we have maxj2B;k2Rd

j
fQjðtÞ

�QkðtÞgP c
ffiPS

j¼1QjðtÞ2
q

. h
Appendix C. Proof of Lemma 3

Proof. First, we show that buffer j is served during the whole time
slot n. At time t;QjðnTÞ � Q �kdðnTÞðnTÞ > 2MT �M1, Because any

queue can vary not larger than M. Consider the worst case, the
length of buffer j decreases M while buffer �kdðnTÞ increases M per
unit time during the time slot n. Then at time
ðnþ 1ÞT;Qjððnþ 1ÞTÞ � Q �kdðnTÞððnþ 1ÞTÞ > �M1. Hence buffer j

does not satisfy the condition of local caching rule defined in
Section 4, namely buffer j will transmit packets during the whole
time slot n.

Then according to the proposed CAAR mechanism, since
QjðnTÞ > M2, we have flag½j� ¼ 1, namely, during the time slot n,

the packets destined for d at buffer j will select �kdðnTÞ as the next
hop. According to Lemma 2, maxj2B;k2Rd

j
fQjðtÞ � QkðtÞgP

c
ffiPS

j¼1QjðtÞ2
q

and the assumption that the capacity of all the links

equals to r. We can obtain

X
k2Rj

X
i2I

Wi
jkðnÞfQ jðnTÞ � QkðnTÞgP rcT

ffiXS

j¼1
Q jðtÞ2

r
ð13Þ

Lemma 3 is proved. h
Appendix D. Proof of Theorem 1

Proof. Define MQ ,
PS

j¼1Q2
j ðnþ 1ÞT �

PS
j¼1Q2

j ðnTÞ. With simple
calculations, we get that

MQ ¼ 2
XS

j¼1

Q jððnþ 1ÞTÞ � QjðnTÞ
� �

QjðnTÞ

þ
XS

j¼1

ðQ jððnþ 1ÞTÞ � QjðnTÞÞ2 ð14Þ

Because we assume that one buffer can vary with the rate no
more than M, we have

XS

j¼1

ðQ jððnþ 1ÞTÞ � Q jðnTÞÞ2 6 M2T2 ð15Þ

According to the queue dynamics in Eq. (1), we get that

XS

j¼1

ðQ jððnþ 1ÞTÞ � Q jðnTÞÞQjðnTÞ

¼
XS

j¼1

AjðnÞQ jðnTÞ þ
XS

j¼1

X
l:j2Rl

XL

i¼1

Wi
ljðnÞQ jðnTÞ �

XS

j¼1

X
k2Rj

X
i2Sj

Wi
jkðnÞQjðnTÞ

¼
XS

j¼1

X
k2Rj

X
i2Sj

Wi
jkðnÞðQ kðnTÞ � QjðnTÞÞ þ

XS

j¼1

AjðnÞQ jðnTÞ ð16Þ
By interchanging the order of the summations, we yieldXS

j¼1

X
k2Rj

X
i2Sj

Wi
jkðnÞðQ kðnTÞ � QjðnTÞÞ

¼ �
XL

i¼1

X
j:i2Sj

X
k2Rj

Wi
jkðnÞðQjðnTÞ � Q kðnTÞÞ ð17Þ

For any buffer j and k, we have

Wi
jkðnÞðQ jðnTÞ � Q kðnTÞÞ > �ðMM1T þ 2M2T2Þ ð18Þ

This is because first 0 6Wi
jkðnÞ 6 MT , and second if

QjðnTÞ � QkðnTÞ 6 �2MT �M1, then Qjð�tÞ � Q kð�tÞ 6 �M1 for all
�t 2 ðnT; ðnþ 1ÞT�, which indicates Wi

jkðnÞ will be 0 under the pro-
posed scheme CAAR since the packet of buffer j will not be trans-
ferred to k during time interval ðnT; ðnþ 1ÞT�.

Let F ¼ fi 2 IjI satisfies the condition of LEMMA 3}. From Eq.
(13) (17) and (18), we can obtain

XS

j¼1

X
k2Rj

X
i2Sj

Wi
jkðnÞðQ kðnTÞ � QjðnTÞÞ

� �
X
i2F

Trc
ffiffiffiffi
Q

p
þ NB2ðMM1T þ 2M2T2Þ

¼ �
X

i2F ;j:i2Sj

ð1� li
jÞTrc

ffiffiffiffi
Q

p
�

X
i2F ;j:i2Sj

li
jTrc

ffiffiffiffi
Q

p
þ NB2ðMM1T

þ 2M2T2Þ ð19Þ

Define l ,minj2B;i2Sj
f1�

P
j:i2Sj

li
jg. Although possibly at some

time the external traffic will completely consume the network
capacity, however, in the long run, the injected traffic will not
always equal to the network capacity. Hence, the utilization ratio
of the link will be less than 100%, namely, li

j < 1. Therefore, we
have l > 0. When Q is large enough, there must exist at least a buf-
fer which satisfies the condition of Lemma 3, that is, jF jP 1.
Hence we can getX
i2F ;j:i2Sj

ð1� li
jÞTrc

ffiffiffiffi
Q

p
P lrcT

ffiffiffiffi
Q

p

Then from Eq. (19), we can obtain that

XS

j¼1

X
k2Rj

X
i2Sj

Wi
jkðnÞðQ kðnTÞ � QjðnTÞÞ

6 �lTrc
ffiffiffiffi
Q

p
�

X
i2F ;j:i2Sj

li
jTrc

ffiffiffiffi
Q

p
þ NB2ðMM1T þ 2M2T2Þ ð20Þ

From the burst constraint of the arrival process, we have

AjðnÞ 6 ajT þ bj ¼
X
k2Rj

f jk �
X
l:j2Rl

f lj

0
@

1
AT þ bj ð21Þ

Combining with Eq. (5) and (6), we have

XS

j¼1

AjðnÞQ jðnTÞ 6 T
XS

j¼1

X
k2Rj

f jk Q jðnTÞ � Q kðnTÞ
� �

þ
XS

j¼1

bjQ jðnTÞ

6 T
XS

j¼1

X
i2Sj

li
jr Q jðnTÞ � QkðnTÞ
� �

þ
XS

j¼1

bjQ jðnTÞ

¼ T
X

i2F ;j:i2Sj

li
jr Q jðnTÞ � Q kðnTÞ
� �

þ
XS

j¼1

bjQ jðnTÞ

þ T
X

iRF ;j:i2Sj

li
jr Q jðnTÞ � Q kðnTÞ
� �

ð22Þ

46 J. Zhang et al. / Computer Communications 62 (2015) 34–46
Obviously
ffiffiffiffi
Q
p

P QjðnTÞ; j ¼ 1;2; . . . ;B, hence

XS

j¼1

bjQ jðnTÞ 6
XS

j¼1

bj

ffiffiffiffi
Q

p
¼

ffiffiffiffi
Q

p XS

j¼1

bj ð23Þ

According to Lemma 3, if i R F , we can get

Q jðnTÞ � QkðnTÞ 6 maxfð2MT �M1Þ;M2g ð24Þ

Since li
j is the utilization ratio of link i, we also have

T
X

iRF ;j:i2Sj

li
jr Q jðnTÞ � Q kðnTÞ
� �

6 rTN maxfð2MT �M1Þ;M2g ð25Þ

Substituting Eq. (23) and (24) into Eq. (22), we yield

XS

j¼1

AjðnÞQ jðnTÞ 6 T
X

i2F ;j:i2Sj

li
jr Q jðnTÞ � QkðnTÞ
� �

þ
ffiffiffiffi
Q

p XS

j¼1

bj

þ rTN maxfð2MT �M1Þ;M2g ð26Þ

From Eq. (16) (20) and (26), we have

XS

j¼1

ðQjððnþ 1ÞTÞ � Q jðnTÞÞQ jðnTÞ

6 �lTrc
ffiffiffiffi
Q

p
þ NB2ðMM1T þ 2M2T2Þ

þ TNr maxfð2MT �M1Þ;M2g þ
ffiffiffiffi
Q

p XS

j¼1

bj ð27Þ

Substituting Eq. (15) and (27) into (14), we get

MQ 6 �c1T
ffiffiffiffi
Q

p
þ c2T þ c3T2 þ c4

ffiffiffiffi
Q

p
ð28Þ

Let T > c4=c1, namely, T >
PS

j¼1bj=ðlrcÞ, we can obtain

MQ 6 �ĉQ
1
2 þ c2T þ c3T2

where ĉ ¼ c1T � c4.

Therefore, 9Qm, when Q > Qm;
PS

j¼1Q2
j ððnþ 1ÞTÞ �

PS
j¼1

Q2
j ðnTÞ < ��, that is, the data center network controlled by CAAR

is stable. h
References

[1] A. Vahdat, M. Al-Fares, N. Farrington, R.N. Mysore, G. Porter, S. Radhakrishnan,
Scale-Out Networking in the Data Center, IEEE Micro 30 (4) (2010) 29–41.

[2] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D.A. Maltz, I. Stoica, Surviving
failures in bandwidth-constrained datacenters, in: ACM SIGCOMM, 2012, pp.
431–442.

[3] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, S. Luz, Dcell: a scalable and fault-
tolerant network structure for data centers, in: ACM SIGCOMM, 2008, pp. 75–
86.

[4] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center
network architecture, in: ACM SIGCOMM, 2008, pp. 63–74.
[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: a high
performance, server-centric network architecture for modular data centers, in:
ACM SIGCOMM, 2009, pp. 63–74.

[6] J. Dean, S. Ghemawat, G. Inc, MapReduce: simplified data processing on large
clusters, in: USENIX OSDI, 2004.

[7] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, Data center TCP (DCTCP), in:
ACM SIGCOMM, 2010, pp. 63–74.

[8] B. Vamanan, J. Hasan, T. Vijaykumar, Deadline-Aware datacenter TCP (D2TCP),
in: ACM SIGCOMM, 2012.

[9] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley,
Improving datacenter performance and robustness with multipath TCP, in:
ACM SIGCOMM, 2011, pp. 265–276.

[10] C. Hopps, Analysis of an equal-cost multi-path algorithm. RFC 2992, Internet
Engineering Task Force, 2000.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera:
dynamic flow scheduling for data center networks, in: USENIX NSDI, 2010.

[12] D. Zats, T. Das, P. Mohan, D. Borthakur, R. Katz, DeTail: reducing the flow
completion time tail in Datacenter networks, in: ACM SIGCOMM, 2012.

[13] D. Abts, B. Felderman, A guided tour through data-center networking, ACM
Queue 10 (5) (2012) 10.

[14] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P.
Patel, S. Sengupta, VL2: a scalable and flexible data center network, in: ACM
SIGCOMM, 2009.

[15] X. Yuan, W. Nienaber, Z. Duan, R. Melhem, Oblivious routing in fat-tree based
system area networks with uncertain traffic demands, IEEE/ACM Trans. Netw.
(TON) 17 (5) (2009) 1439–1452.

[16] J. Mudigonda, P. Yalagandula, M. Al-Fares, J.C. Mogul, SPAIN: COTS data-center
ethernet for multipathing over arbitrary topologies, in: USENIX NSDI, 2010.

[17] T. Benson, A. Anand, A. Akella, M. Zhang, Microte: fine grained traffic
engineering for data centers, in: ACM CoNext, 2011, p. 8.

[18] Hari Balakrishnan, Devavrat Shah, Hans Fugal, Jonathan Perry, Amy
Ousterhout, Fastpass: a centralized zero-queue datacenter network, in: ACM
SIGCOMM, 2014, and correct if necessary.

[19] T.A. Benson, A. Anand, A. Akella, M. Zhang, Understanding data center traffic
characteristics, in: The 1st ACM Workshop on Research on ENterprise
networking, 2009, pp. 65–72.

[20] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, R. Sherwood, On
controller performance in software-defined networks, in: USENIX Conference
on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services, 2012, pp. 1–10.

[21] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: MPLS adaptive traffic engineering,
in: IEEE INFOCOM, 2001, pp. 1300–1309.

[22] S. Kandula, D. Katabi, S. Sinha, A. Berger, Dynamic load balancing without
packet reordering, ACM SIGCOMM Comput. Commun. Rev. 37 (2) (2007) 51–
62.

[23] S. Kandula, D. Katabi, B. Davie, A. Charny, Walking the tightrope: responsive
yet stable traffic engineering, ACM SIGCOMM Comput. Commun. Rev. 35 (4)
(2005) 253–264. ACM.

[24] X. Wu, X. Yang, Dard: distributed adaptive routing for datacenter networks, in:
ICDCS, IEEE, 2012, pp. 32–41.

[25] W. Cui, C. Qian, DiFS: distributed flow scheduling for adaptive routing in
hierarchical data center networks, in: ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, 2014.

[26] U. Cummings, D. Daly, R. Collins, V. Agarwal, F. Microsystems, F.Petrini, M.
Perrone, Fulcrums FocalPoint FM4000: a scalable, low-latency 10 GigE switch
for high-performance data centers, in: 17th IEEE Symposium on High
Performance Interconnects, 2009, pp. 42–51.

[27] S.-T. Chuang, A. Goel, N. McKeown, B. Prabhakar, Matching output queueing
with a combined input/output-queued switch, IEEE J. Sel. Areas Commun.
(JSAC) 17 (6) (1999) 1030–1039.

[28] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers
in the wild, in: ACM IMC, 2010, pp. 267–280.

[29] L. Ying, S. Shakkottai, A. Reddy, On combining shortest-path and back-pressure
routing over multihop wireless networks, in: IEEE INFOCOM, 2009, pp. 1674–
1682.

http://refhub.elsevier.com/S0140-3664(15)00048-1/h0005
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0005
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0065
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0065
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0075
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0075
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0075
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0110
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0110
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0110
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0115
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0115
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0115
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0120
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0120
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0120
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0135
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0135
http://refhub.elsevier.com/S0140-3664(15)00048-1/h0135

	Congestion-aware adaptive forwarding in datacenter networks
	1 Introduction
	2 Related work and motivation
	2.1 Related work
	2.2 Motivation

	3 Network model
	4 Adaptive forwarding
	4.1 Forwarding packets
	4.2 Local caching rule
	4.3 Signaling
	4.4 Procedure of CAAR
	4.5 CAAR Without reordering
	4.6 An illustrative example
	4.7 A word on complexity

	5 Theoretical analysis
	5.1 Definition and constraint
	5.2 Stability of CAAR

	6 Evaluation
	6.1 Simulation setup
	6.2 Results
	6.2.1 Impact of parameters
	6.2.2 Other topologies

	7 Conclusions
	Acknowledgement
	Appendix A Proof of Lemma 1
	Appendix B Proof of Lemma 2
	Appendix C Proof of Lemma 3
	Appendix D Proof of Theorem 1
	References

