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Abstract
Services in modern data center networks pose growing per-
formance demands. However, the widely existed special traf-
fic patterns, such as micro-burst, highly concurrent flows,
on-off pattern of flow transmission, exacerbate the perfor-
mance of transport protocols. In this work, an clean-slate ex-
plicit transport control mechanism, called Token Flow Con-
trol (TFC), is proposed for data center networks to achieve
high link utilization, ultra-low latency, fast convergence, and
rare packets dropping. TFC uses tokens to represent the link
bandwidth resource and define the concept of effective flows
to stand for consumers. The total tokens will be explic-
itly allocated to each consumer every time slot. TFC ex-
cludes in-network buffer space from the flow pipeline and
thus achieves zero-queueing. Besides, a packet delay func-
tion is added at switches to prevent packets dropping with
highly concurrent flows. The performance of TFC is eval-
uated using both experiments on a small real testbed and
large-scale simulations. The results show that TFC achieves
high throughput, fast convergence, near zero-queuing and
rare packets loss in various scenarios.

Categories and Subject Descriptors C.2.2 [Computer-
Communication Networks]: Network Protocols–TCP/IP

Keywords Data Centers, Flow Control, Low Latency, Rare
Loss, Fast Convergence

1. Introduction
The performance demand of services is growing in modern
data center networks. For example, streaming computing
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like Storm [4] supporting online data processing is more
sensitive to average and tail latency than batch models like
MapReduce for offline processing. In memcached systems
[18], zero packets loss is a key performance metric since the
retransmission after loss severely impacts the transmission
performance.

However, the special traffic characteristics, such as short
traffic bursts [13, 22], highly concurrent transport protocols
[2, 12], on-off pattern of flow transmission [34], significantly
deteriorate the performance of flows. Traffic bursts easily
lead to severe congestion and packets dropping, which will
result in long flow completion time [15]. Highly concurrent
flows might cause network congestion even if the congestion
window of each flow is only one Maximum Segment Size
(MSS). Many transport protocols designed for data centers
could not deal with these issues properly [7, 35]. The on-
off pattern of flow transmission possibly causes wastage of
allocated bandwidth [37].

What are the desirable properties for an applicable da-
ta center transport protocol? First, fast convergence. A short
flow usually consists of only several packets. The sluggish-
ness of a congestion window evolution algorithm will post-
pone the transmission of short flows. Besides, the on-off
transmission pattern of flows also needs transport protocol-
s quickly response to dynamic loads. Second, zero packet
loss. Packets dropping possibly result in a series of problem-
s, such as TCP Incast [36], TCP Outcast [32], long query
completion time [7]. Avoiding packets dropping can effec-
tively solve these problems [15]. Third, low latency. Keep-
ing zero-queueing can reduce the network latency caused by
congestion to the extreme extent.

Most of the proposed transport protocols for data cen-
ters could only satisfy some of the desirable properties de-
scribed above. For example, the congestion window adjust-
ment mechanism involved in TCP and its variants (i.e. D-
CTCP) incline to aggressively probe the available bandwidth
through injecting excessive packets to networks, which re-
sults in persistent queue backlog and thus fundamentally



limits latency improvements. The explicit rate-based con-
gestion control protocols, such as D3 [37], cannot deal with
silent flows, i.e. flows are held not closed and wait for data
to resume. To better adapt to these intermittent flows, appli-
cation modifications are inevitable. In Fastpass [31], the s-
calability is restricted by the capacity of the centralized con-
troller which limits its deployment.

To satisfy all above-mentioned properties in data center
networks, the injected traffic in total by end hosts should
fill the network bottleneck link but eliminate in-network
persistent queue backlogs.

In this paper, a novel window-based transport control pro-
tocol is proposed for data center networks, which is called
Token Flow Control (TFC). Two important concepts, To-
ken and the Number of effective flows, are defined in TFC.
Specifically, Token represents the amount of traffic that can
be transmitted by a link in a time slot. The number of effec-
tive flows stands for how many full windows of data packets
will be injected by all the flows in a time slot. By transform-
ing the link transmission capacity to tokens and dynamically
allocating these tokens to passing flows, TFC excludes the
buffer space from the flow pipeline and thus prevents build-
ing up persistent queues. If we could get the accurate value
of tokens and the number of effective flows in a time slot,
then we could allocate the total tokens to flows according to
any allocation policies.

To achieve both fast convergence and accurate congestion
window computation, the time interval of a time slot is
finally set to the Round Trip Time (RTT) of a flow. Besides,
to achieve zero queueing delay, the RTT used to compute
the token value and the RTT used to count the number of
effective flows are decoupled. End hosts mark the first sent
data packet during each round to facilitate switches to get
the two kinds of RTT values.

What’s more, to prevent the performance deficiencies
under the micro-burst traffic pattern, a window acquisition
phase is added after the flow establishment phase. And to
avoid buffer overwhelming when the number of active flows
is too large, if the computed congestion window is smaller
than one MSS, packets will be delayed at switches .

The advantages of the proposed TFC mechanism are
mainly threefold. 1) Ultra-low latency. Since buffer is ex-
cluded from the flow pipeline, TFC can achieve near zero
queueing delay by guaranteeing the summation of the in-
jected traffic by end hosts not exceeding the capacity of
the pipeline. Besides, each flow could quickly converge to
its proper congestion window after two RTTs. Therefore,
the flow completion time could be decreased dramatical-
ly. 2) Achieving near-zero loss. By deliberately designing
the window acquisition phase and packet delay function at
switches, TFC could avoid packets loss caused by bursty
traffic and large-scale concurrent flows in data center net-
works. 3) Switches do not need to maintain states for each

flow and the transport control function at end hosts become
more simple.

The performance of TFC is evaluated in our testbed with
Dell end hosts and NetFPGA [1] switches. The experimental
results show that TFC guarantees high throughput, near zero
queuing, fast convergence and rare packet loss. The window
acquisition phase and the packet delay function at switches
enable TFC to work well with burst traffic and when the
number of active flows is rather large. Simulation results
on the ns-2 platform also indicate that TFC exhibits good
scalability.

2. Design Space
Different from traditional networks, services in data center
networks have many special characteristics, which results in
new requirements for transport protocols besides high link
utilization.

Fast Convergence. In data center networks, about 90 per-
cent of flows are quite short [5]. A short flow is generally
consisted of only several packets. To reduce the completion
time, transport protocols should enable flows to quickly con-
verge to a proper share of bandwidth. TCP and its variants let
flows evolve to their fair share from a quite small initial con-
gestion window, which is not responsive enough to this kind
of flows and causes them not to obtain their fair bandwidth
share before ending.

Furthermore, a flow could keep silent during some time
after establishment. For example, in the Storm computing
framework, a TCP connection exchanges messages for sev-
eral executors [34]. It is likely that the connection will trans-
mit data intermittently. To keep full link utilization, the band-
width occupied by silent flows should be taken up by other
active flows as quickly as possible. TCP or TCP variants fail
to work well in this kind of scenarios due to slow conver-
gence. Although some explicit transport protocols proposed
for data center networks, such as D3 [37], could enable flows
to quickly converge to a proper rate, they rely on SYN and
FIN to count flows. The silent flow will cause some band-
width wastage.

Zero Packet Loss. In large-scale data center networks,
TCP suffers from a growing number of performance issues,
including TCP Incast [14, 39], TCP outcast [32], long query
completion time [37], out-of-order, etc.. Avoiding packet-
s dropping or providing quick packet loss notification can
effectively solve or alleviate these problems [15]. Many
recently proposed transport protocols can significantly re-
duce the number of dropped packets by limiting the queuing
length [7, 35] or controlling the sending rate [21, 37]. How-
ever, most of them could not work well in scenarios with
highly concurrent flows. For example, in DCTCP, the exper-
imental results show that when the number of senders is so
large that a sender’s congestion window is smaller than t-
wo packets in the Incast communication pattern, some flows
will suffer packets dropping or even timeouts [7]. Highly



concurrent flows widely exist in today’s data centers. Lots
of services in data center networks are completed by a large
number of cooperated servers based on the parallel comput-
ing frameworks, such as MapReduce [16] or Storm [4]. For
example, both Google and Microsoft report that each inter-
active web-search service consists of 10s-1000s of servers
on average [12, 35]. Thus, many servers will synchronous-
ly transmit data to the same server in data center networks.
Therefore, it is desirable to design a transport protocol with
zero packets dropping even there are massive concurrent
flows.

Low Latency. Large latency brings great negative impact
on the profits of cloud service providers. Microsecond com-
puting has been identified as a great challenge that hampers
the development of highly responsive, massively scaled data
centers [3]. Many cloud services are conducted using dis-
tributed realtime computation systems, such as Storm [4].
Network latency is a substantial component of the coordina-
tion delay in the computing frameworks. Besides, in interac-
tive applications such as web services, a HTTP request will
generally trigger several hundreds of internal requests in da-
ta centers. For example, a Facebook HTTP request will trig-
ger an average of 130 internal requests inside the Facebook
site [10]. The internal requests are sequentially dependent,
which causes a large cumulative latency. Thus, reducing the
network latency is critical to decrease the response time of
services. Network end-to-end latency could be reduced from
different perspectives, including packet processing delays in
the OS stack, network interface card and network switches,
and delays caused by network congestion [29]. In data center
networks, the round trip delay is extremely low, typically on
the order of a few hundred microseconds [36]. In contrast,
queueing delay could be quite large [7]. Thus, keeping zero-
queueing is a desirable requirement of transport protocols
to reduce the network congestion delay to the extreme extent
in data center networks.

3. Basic Idea and Challenges
3.1 Basic Idea
Broadly, the existing transport control protocols could be
classified into window-based or rate-based approaches.
Window-based solutions offer many advantages, such as
data-driven clocking and inherent stability [33]. In contrast,
rate-based protocols are harder to be implemented since cor-
rectly using timer to control rate is non-trivial [33]. From
another perspective, current transport protocols could also
be classified into explicitly allocating bandwidth by net-
work devices or implicitly probing available bandwidth at
end hosts. However, due to limited information at each host,
implicitly probing bandwidth hardly meets the goals of fast
convergence, zero-queueing and rare packets loss. There-
fore, we will design an explicit window-based transport con-
trol protocol for data center networks in this work.

There are some typical explicit window-based transport
protocols [17, 23]. Unfortunately, the convergence rate of
them are not fast enough [40] since they rely on window
evolution round by round to achieve fairness and efficien-
cy. Also, they hardly achieve zero-queueing and rare packet-
s loss in various scenarios since the evolved window feed-
back is possibly not accurate. In history, there is a well-
known credit-based flow control mechanism designed for
ATM networks [26], which can achieve rare packets drop-
ping by strictly controlling that a receiver can notify a sender
to transmit a certain amount of traffic only when the receiv-
er has the corresponding space (credit) to accommodate the
traffic. However, it could not achieve zero buffering.

Enlightened by the previous explicit transport protocols
and the credit-based flow control mechanism, we aim to de-
sign a transport control protocol that satisfies the above three
goals by obtaining the flow pipeline capacity without buffer
space (credit) and then explicitly allocating the capacity to
passing flows. In this way, first, since the total credit value to
be allocated does not include the buffer space, there will be
no queuing delay. Second, since each sender will inject traf-
fic strictly according to the obtained credit value and no more
traffic will be gradually increased like implicit transport pro-
tocols, rare packets dropping can be achieved. Third, if a
switch could obtain the exact flow pipeline capacity without
buffer space, then a flow will get its proper window in one
round. Thus, fast convergence can be satisfied.

However, how to exactly measure the flow pipeline ca-
pacity without buffer space, the number of passing active
flows, and how to deal with the work-conserving problem
and highly concurrent flows are extremely challenging.

3.2 Challenges
Excluding buffer space from the flow pipeline capacity.
Implicitly probing appropriate window size for flows, like
traditional TCP, usually treats the buffer space as part of
the flow pipeline. More and more packets will be injected
to the network until some packets are dropped or the queue
length exceeds a threshold. To guarantee zero-queueing and
high link utilization, the ideal congestion window size is
c×RTT and the buffer only needs to absorb the bursts with-
in a round. However, in practice the buffer space is usually
an order larger than c×RTT . The packets in buffer only in-
crease the round trip time which harms the responsiveness of
congestion control. Thus, the flow pipeline capacity without
buffer space is the resource that we want to allocate to each
sender. HULL [8] probes the flow pipeline without buffer s-
pace by constructing phantom queues. However, it sacrifices
about 10% of bandwidth. Since most switches along a path
has their own buffer space, without the whole path informa-
tion, it is challenging to exactly know the capacity of the
flow pipeline without buffer space. What’s more, the flow
pipeline capacity varies for flows with different RTTs. Thus,
for a switch that accommodates different kinds of passing



flows, learning the flow pipeline capacity without buffer s-
pace is also challenging.
Accurately estimating the number of flows. Estimating the
number of flows by counting the flow handshaking messages
[37] will cause cumulative errors, e.g., once a SYN packet is
lost, then the retransmission will cause a switch count twice
in the path before the packet loss location. Besides, the flows
that do not send messages could not be excluded. Another
existing method estimates the number of flows according
to historical information, such as using the result of the
link capacity dividing the allocated flow rate in last time
slot. However, under this method, only the bottleneck switch
can obtain the correct number of flows. As a result, the
convergence to efficiency process is slow [40]. Therefore,
we need to design a novel method to accurately estimate the
number of active flows during each round.
Work-conserving. Two main scenarios will cause the work-
conserving problem. First, at a switch, a flow injects less
traffic than the allocated value by the switch since the flow
obtains less bandwidth at another switch. This is common
in topologies with multiple bottlenecks. Second, some flows
will not send any traffic even if they are allocated some
bandwidth. Thus, the bandwidth allocated to these silent
flows should be taken back and allocated to other active
flows. How to adapt to these scenarios that will cause the
work-conserving problem and do not waste bandwidth is
challenging.
Window of less than one. Due to the small round trip
propagation delay and highly concurrent flows in data center
networks, it is likely that congestion will happen even if
each flow only injects one MSS sized packet. Many existing
transport protocols could not well deal with this problem
[7, 37]. Thus, it is challenging to avoid dramatical packets
dropping when the congestion window of one flow becomes
less than one MSS.

4. Design of TFC
In this section, we will first describe a basic abstract model,
then present how to design TFC based on the basic abstract
model to achieve high link utilization, fast convergence,
zero-queueing and rare packets loss.

4.1 Basic Model
In TFC, we define two concepts, Token and the Number
of Effective Flows, to represent the total resource and con-
sumers in a time slot, respectively. The time slot period t is
set to an arbitrary value here, and the proper value will be
discussed in 4.3.

Token T [n]. T [n] represents how many data can be
transmitted by a link in time slot n(n = 0, 1, ...). T [n] can
be computed as c× t, where c is the link bandwidth and t is
the duration of a time slot. Token represents the bandwidth
resource provided by a link in a time slot.
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Figure 1: Illustrating the basic model of TFC. Two flows, f1
and f2, passing port A. Assume rtt1 = 2 × rtt2 and the
token value is 6 packets. Since there are three effective flows
in a time slot, the congestion window is 2 packets for each
flow.

Number of effective flows E[n]. E[n] stands for the
number of full windows of data packets injected by all the
passing flows in time slot n. Effective flows can be consid-
ered as the consumer of the bandwidth resource. Effective
flows are active. Considering that some flows possibly do
not transmit any data during some time, inactive flows need
to be excluded when counting the number of consumers. For
example, many flows transmit data intermittently in Storm
system [34]. Thus, during the silent time, the flows are not
effective.

We only consider the basic objective of fair bandwidth
share with RTT bias, that is, we allocate an equal window
to every flow passing the same port of a switch. Then the
number of consumers should equal the number of the rounds
of all the flows in a time slot. Next, we will show how TFC
just allocates tokens to all senders no matter how long a time
slot is. Formally, denote f as the ID of arrival flows in time
slot n and rttf as the RTT of flow f , then we have

E[n] =
∑
f

t

rttf
(1)

Once we have obtained the token value, T [n], and the
number of effective flows, E[n], we can compute the con-
gestion window of each flow during next time slot

W [n+ 1] =
T [n]

E[n]
(2)

Figure 1 gives a simple example to illustrate the basic idea
of TFC. At port A of switch S2, the passing flows include
f1 and f2. The link bandwidth connecting to port A is c.
Assume the round trip time of f1 is twice of that of f2, that
is, rtt1 = 2×rtt2. Besides, assume the time interval t equals
rtt1 and the tokens equal c × t = 6 packets. During a time
slot, flow f1 injects 1 full window of data packets and flow
f2 injects 2 full windows of data packets. Thus, the number
of effective flows equals 3 and the congestion window is 2.
The tokens can be exactly exhausted.



The basic model guarantees fast convergence since the
number of effective flows is updated every time slot and
each active flow can obtain its proper congestion window
after one time slot. Besides, since the total arrival rates
of all the flows in time slot (n + 1) is

∑
f

W [n+1]
rttf [n+1] =∑

f
1

rttf [n+1]
c∑

i
1

rtti[n]

. Thus, as long as the RTT of each

flow keeps stable in time slot n and slot (n + 1), then the
total injected traffic rate equals the link capacity c, which
ensures full link utilization.

4.2 Measuring the Number of Effective Flows
In TFC, switches explicitly assign congestion window for
each passing flow. The minimum congestion window along
the path of a flow will be carried back to the sender by ACKs.
1. According to Eq. (2), switches need to determine the
accurate number of effective flows in a time slot to compute
the congestion window, that is, switches need to know the
number of full windows of data packets injected by all the
flows in a time slot.

There are several possible methods. First, each flow send-
s a special packet during each round. Switches measure the
number of special packets in a time slot to acquire the num-
ber of effective flows. However, this method brings large
communication overhead. For example, if each round lasts
for about 100 microseconds, 50 flows pass a switch and each
special packet takes 64 Bytes (the minimum Ethernet frame
size), then the bandwidth taken by the special packets along
a path with 1 Gbps rate is about 50× 64×8

1Gbps×100us = 25.6%.
Second, recording the total arrival traffic amount in time slot
n, A[n]. The number of effective flows in time slot n, E[n],
can be computed as A[n]

W [n−1] . However, the congestion win-
dow of a flow equals the minimal congestion window along
the path. Thus, only the bottleneck switch maintains correct
congestion window of last time slot W [n− 1] and could get
accurate number of effective flows in this way.

In TFC, we combine the advantage of above two meth-
ods. That is, each sender marks one specific packet during
each round instead of sending an extra packet. Then switch-
es could obtain the number of effective flows by counting
the number of marked packets. By this method, no per-flow
state is needed to get an accurate E in TFC and there is no
wasted bandwidth for the measuring.

As shown in Figure 2, in time slot n − 1, flow f2 injects
two windows of data packets, and flow f1 is being estab-
lished. According to the number of the marked data packets
and marked SYN packet, we can infer that the number of
effective flows E[n − 1] = 3. According to the duration of
one time slot, t, and the link capacity c, we can compute the
tokens in a time slot. Suppose T [n−1] = 6 packets, then the
congestion window during next time slot W [n] = 2 packet-
s. Similarly, in time slot n, the number of effective flows is

1 This may cause work-conserving problem which existing schemes like
[37] also have to solve. We solve it by the token adjustment mechanism
described in 4.5
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Figure 2: Framework of TFC. Senders mark the first packet
of each full window of data packets to facilitate switches to
measure E.

still E[n] = 3, thusW [n+1] = 2 packets. However, in time
slot (n+1), flow f1 does not send data packets due to some
reasons, such as the flow has finished or the corresponding
application does not have data to send. Thus, E[n + 1] be-
comes 2, and the congestion window is 3 packets.

The method of determining E[n] in TFC has several ad-
vantages. First, it excludes inactive flows. In practice, it is
possible that some flows are inactive for a while intermit-
tently after establishment. Using marked packets to count
the number of effective flows can ensure switches quickly
know the flows variations and compute the proper conges-
tion window size. Second, it avoids cumulative errors. Us-
ing handshaking packets is a simple method of counting the
number of flows [37]. However, if a SYN packet is lost af-
ter it is counted, the retransmission will cause accumulated
counting error of flow number. In our method, the number
of effective flows in time slot n is irrelative to the previous
measured value. Thus, even if the number of effective flows
has some deviations in a time slot, accurate number of effec-
tive flows still could be obtained in afterwards time slots.

4.3 Duration of a Time Slot
Theoretically, the duration of a time slot, t, in the basic mod-
el of computing the congestion window could be any values.
Besides, the duration of different time slots could change.
However, in practice, we need to determine a proper value to
allow end users quickly converge to their appropriate band-
width. Also, the duration of a time slot should not affect the
accuracy of counting the number of effective flows in a time
slot.

On one hand, the duration of one time slot should not be
too large. Otherwise, once some new flows arrive, or some
existing flows finish or become inactive, switches could not
update the congestion window according to the new number
of effective flows. Thus, TFC could not achieve the require-
ment of fast convergence.

On the other hand, the duration of one time slot should not
be too small. Otherwise, the number of effective flows will



fluctuate dramatically. For example, in the scenario shown
in Figure 1, if the duration of a time slot t = rtt1, then the
measured number of effective flows is 3, which equals the
theoretical result t

rtt1
+ t

rtt2
= 3. If the duration of a time

slot t = rtt2, then the measured number of effective flows
becomes 1 and 2 alternatively. The average of the measured
values of two adjacent time slots equals the theoretical result
t

rtt1
+ t

rtt2
= 1.5. However, if the duration of one time slot is

smaller than rtt2, then during some time slots, the number of
effective flows will vary among 0, 1, and 2. If the measured
number of effective flow is 0, then we could not compute the
congestion window value.

Thus, to make a tradeoff between fast convergence and
accuracy of estimating the number of effective flows, the
duration of a time slot is set to one RTT of a flow. In
TFC, the marked packets in each round make switches could
easily measure the RTT of any flows. A switch only needs to
measure the interval of two marked packets belonging to the
same flow to obtain the RTT value of the flow.

Then which flow should be chosen to measure the dura-
tion of a time slot? Choosing the flows with smaller RTT
lead to quicker response to flow variation, while choosing
the flows with larger RTT results in more accurate measured
number of effective flows. To answer this question, we first
investigate the RTT values of different kinds of flows in data
center networks.

The typical topologies in data center networks are 3-layer,
multi-rooted trees with single or multiple paths between two
end servers. In the tree-based topologies [6, 19], generally
there are at most three kinds of connections between a pair
of servers. One is intra-rack connections, one is cross-rack
connections passing core switches, and the last one is cross-
rack connections only passing edge and aggregation switch-
es, but not passing core switches. The RTT value of a flow
is mainly consisted of processing delay at end hosts, link
propagation delay, and store-and-forward delay at switches.
Thus, the maximum round trip time of a flow is at most three
times of the minimum value in data center networks, even if
RTT is dominated by transmission delays. 2 This indicates
that the impact of using which flow’s RTT on the perfor-
mance of TFC is quite small. Besides, if a specific kind of
flows is chosen, the implementation of switches will become
more complex since they have to identify different kinds of
flows and measure the RTT of the specific kind of flows. Al-
so, it is possible that not all the kinds of flows will pass a
switch. Based on these reasons, the duration of a time slot is
determined as the RTT of any flow in TFC. The selected flow
to indicate the duration of a time slot is called the delimiter
flow.

2 Actually, the maximum RTT is about twice of the minimum value in our
testbed.

4.4 Decoupling E[n] and T [n]
The obtained RTT value by measuring the interval of two
marked packets is related with the queueing delay. However,
to keep zero-queueing, the queueing delay should be elim-
inated. Otherwise, larger RTT leads to larger token value,
while the number of effective flows during the measured RT-
T does not change. Correspondingly, the congestion window
of each flow increases, which will further increase the queue
buildup. Thus, the duration of a time slot used to compute
the tokens T [n] and the interval of measuring the number
of effective flows E[n] should be decoupled. The RTT of
a flow without queueing delay should be used to compute
T [n], while the instantaneous RTT of a flow should be used
to count the number of effective flows E[n].

Then how to get the RTT of a flow without queueing de-
lay? Each switch can only know whether itself has queueing
delay, but it could not know the queue length of other switch-
es along the path. Thus, switches at TFC use the minimum
of the measured RTT values as the RTT of a flow without
queueing delay. Note that in store-and-forward switches, the
measured RTT value may be different for packets with dif-
ferent size. Thus, only the marked packets with frame length
larger than 1500 Bytes are used to measure RTT in TFC.

Let rttim represent the measured instantaneous RTT value
of flow i. Besides, rttm and rttb stand for the instantaneous
RTT value and the minimum measured RTT value of the de-
limiter flow in TFC. Then the congestion window algorithm
of TFC becomes

T [n] = c× rttb[n] (3)

E[n] =
∑
i

rttm[n]

rttim[n]
(4)

W [n+ 1] =
c× rttb[n]
E[n]

(5)

In this way, the summation of the arrival rate of all flows
becomes

∑
i

ri[n+ 1] =
∑
i

Wi[n+ 1]

rttim[n+ 1]

=
∑
i

1

rttim[n+ 1]

c× rttb[n]
rttm[n]∑

j
1

rttjm[n]

(6)

In statistics
∑

i
1

rttim[n+1] =
∑

j
1

rttjm[n]
. On the other hand,

rttb[n] ≤ rttm[n] is always true. Consequently, the total
arrival rate of all flows do not exceed the capacity which
indicate that TFC has no consistent queueing. In this way,
TFC can achieve zero-queueing.

4.5 Token Adjustment
The link might be underutilized due to two main reasons.
First, work-conserving problem. In topologies with multiple



bottlenecks, it is possible that a flow does not inject the traf-
fic allocated by a bottleneck switch since another bottleneck
switch allocates a smaller congestion window. Second, since
the RTT of a flow includes a random processing delay at end
hosts, the minimum measured RTT value of a flow used to
compute the token value must be smaller than the average
RTT value without queueing delay of the flow. According to
Eq. (6), the link may be underutilized.

Therefore, to keep high link utilization as well as avoid
buffer backlog, at the end of time slot n, the token value
T [n] used to compute W [n+ 1] is adjusted according to the
link utilization in time slot n.

T [n] = c× rttb[n]×
ρ0
ρ[n]

(7)

where ρ0 is the expected link utilization and ρ[n] = A[n]
c×rttm[n]

(A[n] is the arrival traffic during the instananeous round trip
time rttm[n]). Furthermore, to keep stable link utilization,
we use the moving average method to tolerate noisy points.

T [n] = α× T [n− 1] + (1− α)× T [n] (8)

where α is the weight of the history token value. By using the
token adjustment mechanism, not only the work-conserving
problem is solved, the potential waste capacity caused by
ensuring zero-queueing is compensated.

4.6 Achieving Rare Packets Loss
In data center networks, traffic bursts are likely to cause
a large number of packets dropping. To achieve near zero
packet loss, TFC adds a window acquisition phase and de-
liberately deals with the issue that the congestion window of
one flow is smaller than MSS.

Traffic Bursts. Note that we do not allocate window at
the establishment phase since the new arriving flows are
not counted in the current congestion window computation.
Assume that the SYN packet of a new flow arrives at a
switch at time slot n. Then at the end of time slot n, the
switch will update the number of effective flows E[n] and
W [n + 1]. Thus, the flow needs another round to take back
the new congestion window W [n + 1]. Therefore, in TFC,
a flow will send a marked packet without any payload after
the flow establishment phase to take back proper congestion
window. In this way, the packets dropping caused by new
arrival highly concurrent flows can be avoided.

Window of Less Than One Packet. When the number
of senders is quite large, congestion will happens even if
each sender only sends one packet. Most of prior work fails
to properly deal with this issue [7, 35, 38]. However, this
situation is common in large-scale data centers. There is a
simple solution to the problem, that is reducing MSS at the
transport layer. However, the overhead caused by packets
header will become quite large as the MSS decreases. One
other method is that source i sends one packet every MSS

Wi

RTTs. However, to implement this solution, RTT needs to be

exactly estimated and a high resolution timer to count RTT
Wi

is required. Using high resolution timer to control every
packet will incur lots of interruption.

TFC solves this problem at switches enlightened by the
traffic shaping mechanism, token bucket algorithm. Each
switch maintains a counter for a port, which represents how
many data can be sent. The counter will increase as time
elapses. On a marked ACK packet arrival, if the carried
congestion window is smaller than a packet and the counter
value is larger than a packet, then the carried congestion
window in the ACK header will be modified to one packet
and the counter decreases by a packet. Otherwise, the ACK
will be put into a delay queue to wait for a large enough
counter. If the arrival ACK carries a congestion window that
is larger than a packet, then it will be directly sent out and
the counter subtracts the congestion window carried by the
ACK packet. In this way, the number of flows that transmits
packets during each time slot will not exceed the token value.
Therefore, near zero-queueing as well as high goodput can
still be achieved.

5. Implementation
We implemented the end host part of TFC in GNU/Linux
kernel 2.6.38.3. Only the header and the congestion control
mechanism are modified. The TFC header is similar to the
TCP header except that it uses two reserved bits in the flags
field to mark the first packet in each full window of packets
and its ACK. The two marked bits are respectively named as
RM (Round MArk) and RMA (Round MArk Acknowledg-
ment). The switch part is implemented in NetFPGA [1].

5.1 Sender
During the establishment phase, the sender and receiver ne-
gotiate whether to use TFC or not. Then at the data trans-
mission phase, the sender sets the RM bit in the TFC header
of the first data packet to 1. After receiving a RMA marked
packet, the sender sets the RM bit in the TFC header of the
next sending data packet to 1. In this way, the first packet of
each round has the RM indicator. TFC uses the window field
in the packet header to carry the congestion window. Before
transmitting a data packet, the sender modifies its window
field to be 0xffff as the initial window value.

After receiving a RMA marked packet, the sender deter-
mines its congestion window according to the window value
carried in the ACK header.

5.2 Switch
The functions of switches mainly include computing tokens,
measuring the number of effective flows, and updating con-
gestion windows. Figure 3 depicts the implementation struc-
ture. A TFC switch uses 58% more logic slices (from 12807
to 20235) than the reference switch of NetFPGA project.
49.2% of the overhead is due to the use of divider. We use
totally 8 dividers (each port holding two, one for window
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Figure 3: Implementation structure of TFC switches on
NetFPGA. Packets are forwarded through the data path, and
the control path forwards signals to trigger corresponding
modules.

computation and the other for token adjustment). Through
multiplexing, this number could then be reduced to 1. Thus,
the optimized implementation of the TFC switch will intro-
duce about 30% more logic usage compared to the reference
design.

Init: Set rttb = 160 us, E = 1. Catch the first RM data
packet, record its five tuples as the delimiter flow, and record
the current time tstart = tnow. Set the total arrival traffic
A = 0.

Event 1: On a data packet arrival, add the length of
the data packet to the total arrived traffic A (Rho Counter
Module). If the packet has the RM mark and does not belong
to the delimiter flow, E++ (N Counter Module). Else if
the RM data packet belongs to the delimiter flow, compute
current round trip time rttm = tnow − tstart and update
rttb = min{rttb, rttm} (RTT Timer Module), compute
the link utilization during the current round trip time (Rho
Counter Module), adjust the token value according to eq.
(7) and compute the congestion window W = T

E (Window
Calculator Module). Let E = 1 and tstart = tnow.

Event 2: On an ACK packet with a RMA mark arrival,
if the carried congestion window is less than MSS, it will be
delayed according to the algorithm described in Section 4.6
(Delay Arbiter Module).

When the current delimiter flow ends. If the curren-
t delimiter flow ends, then switches will never catch a RM
marked packet with the same five tuples of the current de-
limiter flow and thus the congestion window will never be
updated. In TFC, the FIN packet and a timer are used to solve
this problem. If a FIN packet is received or 2k × rttlast has

NF0
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NF3NF1 NF2

H2 H3 H4 H5 H6 H7 H8 H9

Figure 4: Testbed.
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S1 S2

Figure 5: Work-conserving s-
cenario.

past (k is the miss times) and no boundary RM flow comes,
TFC will catch another proper RM packet as the new delim-
iter flow. Thus, at the first time, a new RM will be catched
after 2 × rttlast; at the second time, a new RM packet will
be catched after 4×rttlast, and so on. The maximum k is set
to 7. The function is implemented in the RTT Timer Module.

5.3 Receiver
After receiving a data packet with a RM mark, the minimum
of the advertised congestion window size, awnd, at the re-
ceiver and the window value carried in the header of the RM
data packet is assigned to the window field of the correspond-
ing ACK header. Besides, the RMA bit in the ACK header is
set to 1.

6. Evaluation
6.1 Small-Scale Experiment
6.1.1 Experimental Setup
The performance of TFC is evaluated in a small testbed
as shown in Figure 4. The testbed is consisted of 4 NetF-
PGA boards and 9 servers. Each server is a DELL Opti-
Plex 360 desktop with Intel 2.93 GHz dual-core CPU, 6 GB
DRAM, 300 GB hard disk, and Intel Corporation 82567LM-
3 Gigabit Network Interface Card. The operating system is
CentOS-5.5. Each NetFPGA board hosting in a DELL server
has a buffer of 256 KB per port and four 1 Gbps ports.

The performance of TFC is evaluated in different scenar-
ios and is compared with TCP NewReno and DCTCP. The
threshold of marking packets, K, is set to 32 KB in DCTCP
and the weighted averaging factor, g, is set to 1/16 as rec-
ommended in [7]. The parameter of TFC, ρ0, is set to 0.97,
α is set to 7

8 .
The performance evaluation mainly includes four parts.

First, the mechanisms of measuring the token value and Ne

are evaluated to check whether the measured results are ac-
curate. Second, the basic performance of TFC is evaluated
using a series of micro-benchmarks. Third, we evaluate TFC
using the benchmark traffic generated from the measured da-
ta in [7]. Finally, large-scale ns-2 simulations are conducted
to validate that TFC can work well in large-scale topology.

6.1.2 Experimental Results
Accuracy of Measuring rttb and Ne. First, a series of
experiments are conducted to validate that TFC is able to
obtain relatively accurate rttb and Ne.
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Figure 9: High Goodput and Fairness.
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Figure 10: Convergence rate.

First, hostsH1 andH2 send 2 long-lived flows to hostH3,
respectively. rttb is measured at the interval of 1 second, that
is, rttb is set to the minimum of the measured rttm during 1
second. Besides, we let host H1 send one packet with MTU
of 1500 Bytes to H3 per round trip time and get referenced
rtt values. Figure 6 shows the CDF of the measured rttb
and the referenced rtt. It shows that the measured rttb is
around 59 microseconds, while the referenced rtt is about
65 microseconds. This is because the round trip time of a
flow varies due to random processing time at end hosts. The
measured rttb does not include the random processing delay.
However, we can see that the difference between rttb and
the referenced rtt is relatively constant. Thus, we could use
the token adjustment mechanism to get the precise value of
tokens.

Then we let hosts H1 and H4 set up n1 and n2 flows
to host H6. Switch NF2 measures the number of effective
flows at the port connecting to host H6. The delimiter flow
of counting Ne is a flow sent from host H4. To investi-
gate whether the method can exclude inactive flows, we let
n2 = 5, and n1 gradually increase from 1 to 10 and then
gradually become inactive at the interval of 1 second. Fig-
ure 7 depicts the measured number of effective flows. The
measured value is sampled every 0.1 second. The round trip
time of flows from hostH1 is about 1.5 times of the delimiter
flow from hostH4 according to our experimental data. Thus,
the expected number of effective flows is n1

1.5 +n2 according
to eq. (1). The plotted results show that the measured Ne is
quite close to the computed value. Also, the variance of the
samples is small.
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Figure 11: Work-conserving.

High Goodput. Let hosts H1 and H2 establish 2 flows
to host H3 at the interval of 3 seconds, respectively. Figure
9 draws the goodput curves of different flows. The goodput
values are sampled every 20 milliseconds. The results indi-
cate that all of TFC, DCTCP and TCP are able to fully utilize
the bottleneck bandwidth. In terms of fairness among flows,
TFC flows fairly share the whole bandwidth even if in small
timescale, while the goodput of TCP flows is quite unstable.
DCTCP performs much better than TCP since it avoids large
numbers of packets loss by limiting the queue length.

Zero Queueing. Figure 8 shows the queue length varia-
tion with different mechanisms in the above scenario. At the
first 3 seconds, all the three mechanisms have zero queue
length since one flow does not accumulate data packets. Af-
terwards, TFC indeed achieves near zero queueing delay.
Several instantaneous queue length is a little large, but the
maximum queue length is only about 9 KBytes. DCTCP lim-
its the queue length at about 30 KBytes. TCP flows fill up the
whole buffer and the queue length is about 256 KB.

Fast Convergence. To investigate the convergence rate
in detail, we amplify the goodput curves from the start of
flow 3 in Figure 10. TFC flows converge to the expected
goodput quite quickly since they can get their fair share of
bandwidth in one round. In DCTCP, flow 3 spends about 20
microseconds to converge to the fair share. While most of
short flows in data centers can be finished in 10 milliseconds
[7]. TCP flows hardly converge to the fair share in a short
time.

Work-Conserving. To validate that TFC does not have
the work-conserving problem, we conducted experiments in
the topology as shown in Figure 5. we let host 1 initiate n1
flows to host 4 and n2 flows to host 3. Host 2 sends n3 flows
to host 3. Therefore, two bottleneck links form. One is the
uplink connecting switch S1, the other one is the downlink
connecting S2. Let n1 = 8 and n2 = n3 = 2. The goodput
of each flow is sampled and the queue length variation at
the bottleneck ports is measured. Since switch S2 allocates
higher congestion window to n2 flows than S1 does, the
link of S2 could not be fully utilized if the work-conserving
problem happens. Figure 11 shows the aggregated goodput
and queue length variation at switches S1 and S2. Both
S1 and S2 achieve high goodput, which indicates that TFC
does not suffer the work-conserving problem. Note that the
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Figure 12: Incast: goodput and queue length.

goodput of S1 is a little smaller than S2. This is because
each flow has the same congestion window and flows n3
pass fewer hops than flows n2. Thus, the goodput of flows n3
is a little larger than flows n2. Figure 11b shows the queue
length variation at S1 and S2. We can see that the queue
length varies around 2 KB, which is about one packet. TFC
achieves near-zero queueing.

Bursty Fan-in traffic. The incast communication pat-
tern likely causes throughput deterioration due to the fan-
in bursts. We generate the Incast traffic according to the
description in previous work [36]. A receiver requests da-
ta blocks to a certain number of senders. The senders syn-
chronously respond data blocks to the receiver. The receiver
could not request the next round data blocks until it receives
all the current transmitted data blocks. In our experiment,
the block size is 256 KB. The receiver requests data block-
s to all the senders for 1000 times. Figure 12a depicts the
goodput with different number of senders in the incast com-
municaiton pattern. Note that a server possibly acts as sev-
eral senders in the experiment since the number of physical
servers is limited in our testbed. We can see that the goodput
of TFC with different number of senders is about 800-900
Mbps. DCTCP achieves high goodput when the number of
senders is smaller than 50 and suffers goodput collapse as the
number of senders is more than 50. TCP exhibits the worst
performance. Its goodput decreases dramatically as the num-
ber of senders is larger than 10.

Figure 12b draws the average and maximum queue length
vs. the number of senders. TFC almost has no buffer back-
log. The maximum queue length of TCP is close to the buffer
length per port, 256 KB, since the window decrease of TCP
is loss-driven. The average and maximum queue length of
DCTCP is smaller than 100 KB and 200 KB when the num-
ber of senders is smaller than 40, respectively. However, as
the senders increase, the queue length of DCTCP is similar
to TCP.

Benchmark. To evaluate the performance of TFC with
more realistic workload. We conducted experiments in the
small testbed shown in Figure 4. First, we generated realis-
tic traffic, including query, short messages and background
flows, based on the cumulative distribution function of the
interval time between two arrival flows and the probability
distribution of background flow sizes in [7]. The distribution
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Figure 13: FCT of flows.
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Figure 14: Impact of ρ.

curves are gotten based on a large amount of measured data
from 6000 servers in a real data center network [7]. The size
of each query message is 2 KB. Then servers in the small
testbed transmit data according to the time interval and flow
size in the generated traffic.

Figure 13a depicts the flow completion time of query
flows. The average and tail flow completion time under T-
FC is much smaller than DCTCP and TCP. Especially, the
99.99th percentile flow completion time of TCP is quite
large since some flows suffer timeouts. Figure 13b shows
the flow completion time of background flows. TFC flows
that are smaller than 10KB finish quickly than DCTCP and
TCP. While other flows finish a little slower than DCTCP.
This is because the link capacity is constant. Query flows
take more bandwidth. Thus some background flows use less
bandwidth.

Parameters. Hosts H1-H5 establishes a flow to host H6,
respectively. Let ρ0 vary from 0.9 to 1.0. Figure 14 depicts
the goodput at the receiver and the queue length at the
port connecting to host H6. We can see that the goodput
at the receiver matches the expected link utilization, ρ0. As
ρ0 increases from 0.90 to 1.0, the goodput of the receiver
increases from 880 Mbps to 940 Mbps. The packet header
takes the additional bandwidth. Figure 14b shows that only
less than 1 KBytes queue length exists when ρ0 < 0.98.
This small queue length is unavoidable due to the store
and forward process at switches. When ρ0 is larger than
0.98, the queue length gets larger. Especially when ρ0 =
1.0, the average queue length becomes about 6 KB. This is
because the instantaneous round trip time rttm varies, if the
expected link utilization is 100%, possibly some packets will
be accumulated in the buffer if the current round trip time is
smaller than the average round trip time.
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Figure 15: Incast communication pattern.

6.2 Large-Scale Simulation
To evaluate the performance of TFC in large-scale networks,
TFC is implemented on the ns-2 platform and simulations
are conducted with higher bandwidth and larger number of
flows.

6.2.1 Bursty Fan-in Traffic
We generate the Incast communication pattern in large-scale
simulation platform to emulate bursty fan-in traffic. Each
link has the rate of 10 Gbps. The switch buffer size is 512
KB. The synchronized block size is 256 KB. At start, the
receiver sends a request to all the senders, then each sender
transmits 256 KB data to the receiver. After successfully
receiving the blocks from all the senders, the receiver will
send requests to all the senders for the next round of blocks.
The simulation lasts for 2 seconds, and we analyzed the
averaged goodput, the total number of timeouts, and the
instantaneous queue length.

Figure 15a depicts the averaged throughput at the receiver
with different block size. The link utilization of TFC is
always around 90% with different number of senders, while
the throughput of TCP dramatically decreases with more
than 50 senders. Note that the link utilization in both TFC
and TCP is a little low when the number of senders is quite
small. This is because the time used to transmit blocks is
quite small. For example, if there is one sender and the data
block size is 256 KB, then the data only needs two rounds to
finish. However, the request sent by the receiver to notify all
the senders transmit data will waste a round. Thus, the link
can not be used to transmit blocks all the time.

Figure 15b depicts the maximum timeouts suffered by
one flow per block. In TFC, the number of timeouts is al-
ways around zero no matter how many senders concurrent-
ly transmit data blocks since TFC could achieve near-zero
packet loss. This explains why TFC achieves high through-
put with different number of senders. While TCP flows suf-
fer lots of timeouts. When the number of senders is larger
than 300, one block will suffer 0.8 timeout on average.

6.2.2 Benchmark
The topology is similar to the real testbed as shown in

Figure 4 except that the number of leaf switches increases to
18 from 3. And each leaf switch is connected to 20 servers.
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Figure 16: Simulation: FCT of flows.

Each leaf switch and its connected servers constitutes a rack.
Each leaf switch has 20 1Gbps downlinks to the servers and
1 10Gbps uplink to the top switch. The latency of each link
is 20 us. Thus, the end-to-end round trip latency of 4 hops
(inter-rack flows) is 160 us and the end-to-end round trip
latency of 2 hops (intra-rack flows) is 80 us.

The benchmark workload is generated using the same
method as that in the experiment. Figure 16a shows the flow
completion time of different kinds of flows. On average, the
flow completion time of one DCTCP query flow is about 30
times more than one TFC flow, and one TCP query flow us-
es about 8 times more time to finish than one DCTCP query
flow. Besides, the tail latency of TFC is quite small. How-
ever, DCTCP and TCP suffer much high tail latency. This is
because there are 360 servers in our simulation. One query
request will cause 359 servers transmit a query response to
the last server concurrently. This 359 concurrently flows like-
ly overwhelm the bottleneck buffer under DCTCP and TCP.
However, TFC can effectively deal with this high traffic burst
due to its delay function at switches.

Figure 16b depicts the flow completion time of back-
ground flows. When the flow size is larger than 1 KB, T-
FC performs a little worse. This is because TFC query flows
do not suffer timeouts and thus they can take more band-
width compared with DCTCP and TCP. While in DCTCP
and TCP, a large number of timeouts suffered by query flows
cause that query data could not fill network links all the time.
Therefore, background flows can take more bandwidth.
7. Related Work
Data Center Transport Control. DCTCP[7] and D2TCP
[35] follow the framework of TCP and leverage the ECN
marking scheme to keep the queue length low. However, they
are not responsive for short flows due to slow convergence.

D3 [37] allocate bandwidth to flows according to their
deadline demand and distribute the rest fairly to every flow.
However, D3 is a clean slate design which not only need
specialized switch, but also need to modify the application.
Besides, D3 will lead to cumulative error in counting the
number of flows.

Fastpass [31] uses a centralized arbiter to determine the
time at which each packet should be transmitted as well as
the path to use for that packet. However, the scalability of

Fastpass is limited by the centralized arbiter that needs to
deal with all the packets.

There are several work use flow scheduling to optimize
flow completion time in data center [9, 11, 20, 21, 30].
These work focus on the benefits of scheduling and use
legacy protocol or simple congestion control to simplify
their design. While, TFC is a new which is orthometric to
them.

HULL achieves near zero buffer through phantom queue,
while it based on DCTCP which cannot provide extreme fast
convergence and rare packet loss.

Credit-Based Flow Control. Kung et al. proposed a se-
ries of work on credit-based flow control mechanisms for
ATM networks to to achieve near zero loss ratio [24–28].
The credit-based flow control mechanism works hop-by hop.
Each receiver notifies its sender to transmit a certain amount
of data cells by sending credit cells. After having received
a credit cell, the sender can forward data cells according to
the received credit value. In this way, the credit-based flow
control achieves near zero loss ratio. However, the credit-
based flow control mechanism requires to maintain a sepa-
rate buffer space for each session (VC) passing through the
link. The number of connections sharing a path is usually
large in data centers. Maintaining the buffer space for all
connections will introduce high overhead.

Explict Flow Control. There are some typical explicit
transport protocols designed for traditional Internet [17, 23].
However, they are not suitable for data center networks.
For example, XCP [23] is designed for networks with high
bandwidth-delay product, the convergence rate of it is quite
slow with respect to the fast convergence requirement in data
center networks [17]. RCP [17] has large buffer requirement
during flow join and hardly deals with large-scale concurrent
flows [40]. Besides, the convergence rate of it is also slow
[40].

8. Conclusion
In this work, an explicit window-based transport protocol,
called TFC, is proposed for data center networks to achieve
high link utilization, fast convergence, zero-queueing and
rare packets loss. Two concepts, Token and Effective Flows,
are defined to represent the network resource to be allocat-
ed and resource consumers in a time slot. By excluding in-
network buffer from tokens and decoupling the measuring
mechanisms for determining tokens and the number of effec-
tive flows in a time slot, TFC achieves near zero-queueing.
Besides, by adding a window acquisition phase after the flow
establishment phase and a delay function at switches, TFC
prevents packets dropping with traffic bursts and highly con-
current flows and thus achieves rare packets loss. The exper-
imental results in our testbed and simulation results indicate
that TFC achieves its goals.
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