
Mitigating Bufferbloat with Receiver-based TCP
Flow Control Mechanism in Cellular Networks

Xiaolan Liu, Fengyuan Ren, Ran Shu, Tong Zhang, Tao Dai
Tsinghua National Laboratory for Information Science and Technology, Beijing, China
Department of Computer Science and Technology, Tsinghua University, Beijing, China
{xl-liu12, shur11, zhang-t14, dait14}@mails.tsinghua.edu.cn, renfy@tsinghua.edu.cn

Abstract—Bufferbloat is an intractable phenomenon in both
the Internet and cellular networks, which may cause excessively
long delays without contribution to the improvement of through-
put at the same time. The problem matters more for the latter,
since large buffer is inevitable due to the demand of link layer
retransmission mechanism as well as mitigating traffic burst.
We unveil the root cause of bufferbloat to be the mismatching
between the adjustment of sending windows and the dynamic
variation of available bandwidth at the existence of large buffer.
Being the bottleneck link and last hop of a connection in cellular
networks, wireless link connects the mobile terminal directly.
Besides, the mobile terminal can get all of the information of
channel such as channel states and signal strength. So it is more
feasible to resolve the bufferbloat at receiver side with the help of
channel information, nevertheless, which is ignored in previous
studies. So in this article we propose a receiver-based flow control
strategy named as ABRWDA that retrieves available bandwidth
at receiver side directly and use it to dynamically calculate the
receiver window (rwnd) to mitigate the bufferbloat in cellular
networks. We test our approach with the NS-2 simulation, and
results indicate that ABRWDA achieves 0.1× and 0.4× shorter
queues, 0.5× and 0.8× lower latency, while still maintaining the
same high throughput as that of Newreno and a previous solution
DRWA, respectively.

Index Terms—Bufferbloat; TCP; Cellular networks.

I. INTRODUCTION

The use of cellular networks is increasingly popular due to
the ubiquitous deployment of mobile communication infras-
tructure, the quick updating of mobile terminals and mobile
applications, as well as the development of mobile commu-
nication technologies. In Sandvine globe Internet phenomena
report, the real-time entertainment, web browsing, and social
networking make a 71.55% composition of average peak
period traffic of the global mobile access [1], and the mean
monthly usage of mobile access increases 16.6% in one year,
while that of fixed access is only 13.4% [1], [2]. The explosive
growth of mobile data traffic poses severe pressure on cellular
network providers to provide better services, in which there
still exists many performance problems. Bufferbloat [3] is a
most typical one.

Bufferbloat is the phenomenon that packets are blocked
in buffers when the sending window increases persistently at
the existence of large buffers, which causes large delays and
little improvement in throughput. The large buffer in cellular
networks is the engineering choice for smoothing traffic bursti-
ness and adapting to channel variability. Because the packet

dropping is totally concealed by link layer retransmission
mechanisms, TCP tends to fill up the buffer at congested links
no matter how much the buffer size is. The heavily packed
buffer contributes to excessive traffic delays and thus lose the
ability to perform their intended function of absorbing traffic
burst [4]. In cellular networks, the wireless links usually lie
between base stations and mobile terminals. Because of the
lower bandwidth of wireless links than that of wired ones,
packets will accumulate in the buffer of base stations on the
last hop when they are transferred from server to terminal.
So the bufferbloat problem in cellular networks occurs in the
downlink. In a prior study [5], up to several seconds of round
trip delays caused by large buffers can be observed.

There are several proposals of mitigating bufferbloat in
the Internet [4], [6]. Nonetheless, these schemes either need
modifications to the base stations or require the sender-side
to distinguish mobile access from fixed access for enhancing
TCP, either of which can cause tremendous deployment costs.
By contrast, a receiver-based solution is a more light-weight
choice for the cellular case, since the mobile terminals, as
receiver-side, are really alterable to users. The previous so-
lution DRWA [5] introduces a delay-based window adjust-
ment mechanism upon receiver-side. However, interfered by
the receiver-side estimation error of RTTs and congestion
windows, DRWA performs even worse than delay-based TCP
versions like Vegas.

In this paper, we present an approach named as ABRW-
DA (Available Bandwidth based Receiver Window Dynamic
Adjustment) to dynamically mitigate bufferbloat in cellular
networks. Cellular networks have a special characteristic that
the bottleneck link is always the last hop for downlink. On
the other hand, the bandwidth of wireless channel has a
certain relationship with the Signal to Interference plus Noise
Ratio (SINR) and channel states. And UE can get all these
information because of the direct connection with it. The key
innovation of ABRWDA is to adjust sending window dynam-
ically to adapt to the time-varying bottleneck link capacity
in cellular networks. ABRWDA retrieves the bandwidth at
receiver side directly by tracking the SINR. Meanwhile, RTT is
also estimated at the receiver-side. By multiply bandwidth and
RTT, the appropriate receiving window is obtained. To control
sending window at receiver-side, ABRWDA modifies the
TCP flow control mechanism with dynamically adjusted rwnd
calculated by previous method. We insist that our solution is



UE

Internet

NB/eNB

SGSN/S-GW

Server

GGSN/P-GW

HLR/MME

CN/EPS

Fig. 1. The architecture of cellular networks.

easy to deploy because it can be functioned as either a kernel
module or a netfilter, while requires no modifications to the
network or application software and no support from ISPs.

To evaluating the performances of ABRWDA, several simu-
lations on NS2 platform is conducted. The experiment results
prove that ABRWDA can reduce delay while maintain the
appropriate throughput of TCP. Further experiment results
show that the Average Flow Completion Time (AFCT) is
reduced by 25% to 78% compared to TCP NewReno and
at most 50% improvements compared to previous solutions.
Results also reveal better network environment adaptability of
ABRWDA.

The rest of the paper is organized as follows. We presents
the background, related work and motivation in section II.
Detailed algorithm design and analysis of ABRWDA are
presented in section III. Section IV outlines the experimental
configurations thoroughly, followed by the experimental result-
s and performance comparison with that of other approaches
in section V. We conclude our paper and discuss our future
work in section VI.

II. BACKGROUND, RELATED WORK AND MOTIVATION

In this section, we describe the background, related work
and motivation of this paper.

A. Background

1) Cellular Networks: The cellular network is a heteroge-
neous network that consists of wired and wireless parts, as
illustrated in figure 1. The wired part has the characteristics
such as traffic burst. The wireless part has several compositions
such as node of base-station (NB) and user equipment (UE),
and UE is the downlink terminal of a connection.

The link bandwidth of wireless part is variable due to the
signal variation of wireless channels. The link between base-
station (BS) and UE is always the last-hop of a downlink
wireless link, and it also is the bottleneck of the connection [5].
Cellular networks also use TCP as it’s transport layer protocol.
However, due to the time-varying nature of the wireless chan-
nels, TCP does not work well enough in wireless networks. So
in many cellular networks, a large buffer is deployed to absorb
the burst traffic and achieve the retransmission mechanism of
the link layer [5], [7].

Server

NB

UE

Fig. 2. Illustration of bufferbloat problem in cellular networks.

2) Bufferbloat: Bufferbloat [3]–[5], [8] is an intractable
phenomenon in both the Internet and cellular networks, which
may cause excessively long delays without contribution to the
improvement of throughput at the same time. The problem
matters more for the latter, since large buffer is the inevitable
choice due to the demand of link layer retransmission mech-
anism as well as the need of mitigating traffic burst.

In a bufferbloated circumstance we consider in this paper
in figure 2, the source will increase it’s sending window
persistently because the packets dropping is concealed by
the large buffer. So the RTT latency increases sharply when
packets are blocked in large buffer.

3) TCP Flow Control Mechanism: The TCP receive win-
dow is originally designed to prevent a fast sender from
overwhelming a slow receiver with limited buffer space, used
in TCP flow control mechanism [9]. This mechanism governs
the size of a sending window together with the congestion
control mechanism. It reflects the available buffer size on the
receiver side so that the sender will not send more packets
than the receiver can accommodate.

4) Available Bandwidth: The available bandwidth of a
connection is the difference of the link capacity and the
data rate of cross traffic. End-to-end available bandwidth
estimation is important for a range of applications such as
network management, flow control and rate adaptation in real-
time multi-media streaming [10]. It depends on that of the
bottleneck link. In a practical cellular network communication,
the wireless link forms the last hop from the base station to the
mobile clients, which is usually the bottleneck of the routes
in terms of congestion [5]. Therefore, the available bandwidth
of the wireless link is usually that of the whole connection.

B. Related Works

1) Bufferbloat: The issue about bufferbloat was first ex-
posed by Dave P Reed in [11]. He found large RTTs along
the routes but without packet loss. Kathleen Nichols and Van
Jacobson proposed a modern AQM, CoDel [4], which aims
to solve the bufferbloat by gauging the packet-sojourn time
through the queue with the help of the timestamp. Rong Pan
et al. issued a latency-based design for controlling bufferbloat
in the Internet in [6], which could effectively cap the average
queueing latency with a reference value.

All these works are about tackling bufferbloat in the Inter-
net, and bufferbloat also exists in cellular networks. DRWA, a
dynamic receive window adjustment approach, was proposed
in [5] to tackle the bufferbloat by estimating the cwnd with the
received data at receiver side. In order to mitigate the ACK



delays by eliminating TCP ACK clocking, a new TCP variant
TCP-RRE was presented in [12]. It used TCP timestamp to
estimate the receive rate at receiver side and determines the
sending rate accordingly, which can keep the occupancy of the
downlink buffer low. In [13] Yung-Chih Chen et al. researched
the bufferbloat’s influence of on multi-path TCP (MPTCP)
with WiFi and cellular networks. They show that MPTCP
might suffer from bufferbloat when there is another long-lived
WiFi flow and the severer the bufferbloat is, the more harm
MPTCP’s performance will sustain.

2) Receiver-side Flow Control in Cellular Networks: TCP
uses the effective sliding window mechanism to adjust the
sending rate at the sender side. The sending window size is the
minimum of the congestion window cwnd and the advertised
receiver window rwnd. But TCP works poor because of the
time-varying wireless channels in cellular networks. RCP [14]
is a TCP clone that performs all important tasks including
congestion control and reliability mechanism at receiver side.
In [10] the TCP sending rate is varied adapting to the dynamic
adjustment of advertised receive window. Yin Xu et al. use
a receiver-side flow control to regulate the 3G/HSPA uplink
buffer in [15].

C. Motivation

From the above subsection we know many works have been
performed in cellular networks to tackle bufferbloat. Seminal
as they are, all these approaches do not uncover the root
cause of bufferbloat, which is the mismatching between the
adjustment of sending windows and the dynamic variation of
available bandwidth at the existence of large buffer. In this
case, the key to solving bufferbloat is to make the sending
rate adapted to the time-varying available bandwidth of the
connection.

In cellular networks the wireless link is always the bottle-
neck link of the network, so it’s available bandwidth is usually
that of the connection. The UE acts as receiver for data sent
from the server in the wired data network, which consist of
the downlink of the connection. Being adjacent to the wireless
link, which is the last-hop of the connection, UE obviously can
obtain first-hand information of the wireless link [14], and it
has all the information necessary to determine the rate at which
packets should be sent by the server [16]. These information
(such as MCS and SINR) has congruent relationship for certain
network type, as stated in [17], [18]. Accordingly, UE can get
the variable bandwidth value with the variation of wireless
channel states.

In a word, we can retrieve the wireless link bandwidth at
UE directly with the help of the channel information, estimate
RTT with the same method in [5], calculate rwnd with the
former two and adjust the sending rate with calculated rwnd
finally under TCP flow control mechanism.

III. ALGORITHM DESIGN AND ANALYSIS

In this section, we present algorithm design and analysis of
ABRWDA.

Algorithm 1 ABRWDA
Initialization:

1: wind ⇐ CWND INIT ;
2: last wind ⇐ CWND INIT ;
3: data cumd ⇐ 0.0;
4: rtt min ⇐ a large enough value;

5: if data cumd == 0.0 then
6: start time ← now;
7: end if
8: data cumd + = PacketSize;
9: if data cumd > last wind then

10: rtt est ← now − start time ;
11: if rtt min > rtt est then
12: rtt min ← rtt est;
13: end if
14: last wind ← wind ;
15: Dbw ← (1− α) ∗Dbw + α ∗ bandwidth ;
16: wind ← λ ∗Dbw ∗ rtt min ;
17: rwnd ← wind > last wind ?wind :

last wind ;
18: data cumd = 0.0;
19: else
20: rwnd ← wind ;
21: end if

A. Retrieving the Available Bandwidth

The UE can obtain the overall information about the physi-
cal channels, and the transport layer communication protocols
will then get these information directly from UE.

In the Internet there may be several flows at the same time.
So the link bandwidth is shared by these flows. But research
result in [19] shows that in LTE there is only one TCP flow
actively downloading data in 72.1% of the time, and this
percentage might be even larger for smart phone users because
a fraction of users that using LTE data cards on their laptops
may be included in their data set, which may have high TCP
flow concurrency. That is to say, in most cases there is only
one TCP flow in a short time scale in cellular networks. So
the available bandwidth of a connection is exactly that of the
wireless link. Thus we think that the link bandwidth is used
by one flow in cellular networks in one time. We get the link
bandwidth as the method displayed in the above subsection.
Due to its dynamic nature, we use a filter with a moving
average coefficient α to smooth its fluctuation.

B. RTT Estimation

We get RTT estimation by averaging the RTT samples ob-
tained from the timestamp within the last RTT when timestamp
option is on. Otherwise, we estimate the RTT value with the
time interval between a first acknowledged byte and a byte
receipted whose sequence number is at least one window size
forward, the same method in [20].



Wired link Wireless link

Server NB UE

Fig. 3. Network topology in simulation.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Packet size 1500B
Queue management Drop Tail
Buffer size in NB 500 packets
Bandwidth between sender and NB 1000 Mbps
Bandwidth between NB and UE: downlink (3.1∼9.3)Mbps
Bandwidth between NB and UE: uplink (1.8∼5.4)Mbps
Link delay between server and NB 50ms
Link delay between NB and UE 25ms
CWND INIT 10 packets

C. Rwnd Calculation

We calculate rwnd with the retrieved available bandwidth
and estimated RTT and adjust the sending window with
TCP flow control mechanism. The Detailed realization of
window acknowledgement mechanism needs a RTT period.
The adjustment effect to sending window of rwnd will be seen
at least after a RTT. But in a RTT, the bandwidth may be varied
from a small value to a big one, which can causes the tendency
to zero buffer and throughput decreasing. Thereafter, we set a
scaling factor λ to handle this case.

Because of the dynamic variation of wireless link band-
width, the size of current rwnd window may be smaller than
that of the previous one when there is a sudden increase in
the wireless link bandwidth, which could cause the abnormal
phenomenon that the estimated RTT value is smaller than
the theoretical minimum (propagation delay only). So in our
design, we select the bigger one between the current window
and the previous one as new rwnd.

The pseudocode of ABRWDA is presented in algorithm 1.

IV. SIMULATION CONFIGURATIONS

In light of the limitations stated in aforementioned litera-
tures, we propose a method named ABRWDA to mitigate the
bufferbloat in the cellular networks. We perform several sim-
ulation experiments to test the effectiveness of our approach.
The simulations are performed using NS-2 version 2.30, which
is running on the Ubuntu 10.04 LTS with 2.6.32-21-generic
Linux kernel. And the simulation topology is shown in figure
3.

There are three kinds of nodes in the simulations, denot-
ing the remote server, the base-station (NB) and the UE,
respectively. The remote server lies in the wired network. The
link bandwidth between the server and NB is 1Gbps, and

(a) RTT

(b) Queue Length

Fig. 4. The RTT and queue length of NewReno in a bufferbloated circum-
stance.

the propagation delay is 50ms. In a real experiment in [5],
they observed more than 800KB (almost 560 packets with
1500B packet size) packets in flight for a certain carrier. The
minimum BDP is 58KB for this network state. So in our
simulation we set the buffer size of NB to be 500 packets,
far greater than the minimum BDP. The queue management
mechanism is drop-tail. The UE can be mobile phone or
laptop.

In NS-2, any two nodes are connected by an OTcl object
[21]. The link bandwidth and propagation delay are stored in
two member variables of OTcl class DelayLink respectively.
In our simulation, we obtain the available bandwidth in file
tcp sink.cc using a customized static member variable. It
inherits the member function bandwidth() of its parent class,
which returns the link bandwidth value bound with it given
in Tcl file. We determine the configurations of the wireless
link according to the UMTS specifications, and the model
presented in [22] is also referred to. The bandwidth is set to
be the theoretical value of the CDMA2000. All the parameters
are listed in table I.

In real network circumstances, wireless physical link rate
is dynamically variable due to the variation of signal strength
and other radio environment [23]. In our simulation, the raw
TCP version is NewReno. We simulate the dynamism of the
wireless link bandwidth with random variables in Tcl file. We
use two random variables to reappear the dynamical variation



of the wireless link bandwidth. The first random variable
simulates different experiment circumstance with good or
weak signal condition. And the second one simulates the
dynamic variation of wireless link bandwidth. Our simulation
results in figure 4 agree with that in [5], which are measured in
real networks. So configurations in our simulation can depict
the practical networks conditions perfectly.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this section, we analyze the performance of ABRWDA
and make a contrast with that of DRWA and some other TCP
versions. There have been many works about TCP perfor-
mance in wired networks, but what it is like in bufferbloated
circumstance is still undiscovered. In this section we present
the performance evaluation of ABRWDA, DRWA and Vegas
in a bufferbloated cellular network.

A. TCP Performance Analysis Under Bufferbloated Circum-
stance

1) TCP performance of ABRWDA in a bufferbloated cir-
cumstance: The buffer size is excessively bigger than BDP
in a bufferbloated network circumstance. The sender will
persistently send packets when there is no packet dropping.
So the queue length in buffer will grow up quickly, as shown
with red line in below picture of figure 4. The queue size
reaches to the maximum at 3.51 seconds, and it begins to
decrease after a stable state because of the packet dropping.
It decreases to the zero at 8.92 seconds. Though after a new
window evolvement, buffer size still keeps in a great value in
the simulation.

The big buffer size can cause extra long delay. The red
line in upper picture of figure 4 stands for the RTT in a
bufferbloated circumstance, estimated with the approach in
the algorithm 1. We can see that RTT in real networks with
NewReno is greater than that with ABRWDA, represented
with green line in bottom picture of figure 5. The great spike
of RTT is caused by the absence of packets which should be
received normally in standard TCP. The zero buffer size harms
the throughput seriously just as the full buffer does to RTT.
The throughput collapses steeply when buffer size decreases
to zero. We don’t present throughput for NewReno due to the
space limitation.

The essence of ABRWDA is the adaption of the sending
rate to the bandwidth variation of wireless links at the exis-
tence of large buffer. In figure 5, the green line stands for
the performance of ABRWDA. The pink line in the upper
picture represents the variation of bandwidth. We can see
that ABRWDA can adapt well to the variation of bandwidth
dynamically.

The appropriate queue length ensures the perfect throughput
as well as low delays. The green line in the middle picture
presents the measured queue length of ABRWDA in a 60
seconds simulation. We can see that the maximum queue
length does not exceed 63 packets, being bigger than BDP
calculated with minimum bottleneck bandwidth (about 40

(a) Thoughput

(b) Queue Length

(c) RTT

Fig. 5. Throughput, queue length and RTT performance of ABRWDA, DRWA
and Vegas in a 60 seconds simulation.

packets size). The RTT measurements are represented in the
bottom picture of figure 5. We can find that it’s variation is in
a opposite tendency to that of bandwidth, and the RTT values
are steadily varied in the range of 0.154 (the delay without the
queuing delay) to 0.33 second, which is a great improvement
contrasted to the standard TCP without ABRWDA, shown in
the upper picture of figure 4.

From the figure 5 we can see that ABRWDA keeps an
appropriate queue length that can maintain the high throughput
and low delay at the same time.

2) TCP Performance of DRWA in a Bufferbloated Circum-
stance: The performances of DRWA are presented with red
line in figure 5. DRWA estimates the cwnd with received



Fig. 6. The CDF of link utilization and RTT with different α values (λ=1).

data at receiver side, and restrains the sending rate with rwnd
calculated with the estimated cwnd and RTT.

Since the estimation of rwnd is only based on the transport
layer information, DRWA has no knowledge of the real link
available bandwidth. So the sending rate can’t adapt to the
variation of link bandwidth, which can explain the several
collapses and the dramatic fluctuation in queue length, as
shown in middle picture. And RTT plotted in bottom picture
fluctuates accordingly.

From figure 5 we can find that ABRWDA’s adaptability to
the variation of network states is superior to that of DRWA.
ABRWDA can perfectly adapt to the variation of network
states, keep queue length within an appropriate range and
reduce the RTT naturally.

3) TCP Performance of Vegas in a Bufferbloated Circum-
stance: Vegas is a TCP variant that confines all the changes at
the sending side [24]. It adjusts the cwnd with the difference
of expected sending rate and actual sending one. When there
is congestion in network, the difference will increase, then
Vegas decreases the sending rate to avoid congestion. Thus,
the congestion avoiding is achieved in return for the decrease
of throughput. We can see in the upper picture of figure 5 that
Vegas’s adaptability to the variation of bandwidth is severely
poor. The throughput collapses severely in several period of
times, and does not vary with the variation of bandwidth,
which can been seen at 10.001, 18.109, 40.001 seconds
respectively. The average queue length is only 6 packets , with
the maximum of 84 packets size at the beginning, as shown in

Fig. 7. The CDF of link utilization and RTT with different λ values (α=1/4).

the middle picture of figure 5. In 40.76% of simulation time,
the queue length is zero, under which the RTT is relatively
small. The average value is 0.166 second, except for a 0.449
second of maximum at the very beginning.

B. The Effect on TCP Performance Caused by Parameters’
Selection

The essence of ABRWDA is the adaption of sending rate
to the variation of wireless link state at the existence of large
buffer. In the upper picture of figure 5, the pink line indicates
the variation of throughput well keeps up with the variation
of bandwidth. Several little jitters triggered by bandwidth
variation can be found, but they dissipate very soon.

There are two parameters to be configured in algorithm 1:
one is α, which is the coefficient of the moving average filter,
the other is λ, the scaling factor to adapt to the bandwidth
variation. We seek for their optimal values in 2 steps: first, we
set λ as 1,and test optimal α with different values; second, we
test the optimal λ value with the optimal α value found in the
former step.

In algorithm 1, we dispose the variation of bandwidth
with a smooth average filter. We test the appropriate α in
experiments and calculate both the CDF of link utilization
and RTT under different α values, shown in figure 6. We can
see that compared with other α values, the link utilization is
significantly lower when α is 1. All the α values less than 1
produce similar utilizations, and the value of 1/4 produces the
best utilization.



ABRWDA DRWA Newreno Vegas
0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n 
T

im
e 

(s
)

 

 
pd=150
pd=326
pd=450
pd=550
pd=653

(a) The AFCT of a 1 packet-size flow

ABRWDA DRWA Newreno Vegas
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n 
T

im
e 

(s
)

 

 
pd=150
pd=326
pd=450
pd=550
pd=653

(b) The AFCT of a 30 packets-size flow

ABRWDA DRWA Newreno Vegas
0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n 
T

im
e 

(s
)

 

 
pd=150
pd=326
pd=450
pd=550
pd=653

(c) The AFCT of a 200 packets-size flow

Fig. 8. The comparison of average flow completion time (AFCT) of
ABRWDA, DRWA, NewReno and Vegas under different network conditions.

In figure 6,though we can see that there is little difference
in RTT CDF in the cases of different α values, we can still
find that the smaller α is, the less RTT varies. Combining the
CDF of link utilization with that of RTT, we choose the 1/4
as the optimal value of α.

We test different values of λ with the optimal α value
selected in former experiment, the results are shown in figure
7. In the upper picture, we can see that the link utilizations

100 200 300 400 500 600 700
0

0.5

1

100 200 300 400 500 600 700
0

0.5

1

F
ac

to
r 

of
 Im

pr
ov

em
en

t

100 200 300 400 500 600 700

0

0.5

1

Link Delay (ms)

 

 

ABRWDA DRWA Vegas

Fig. 9. The performance improvement about AFCT of ABRWDA, DRWA and
Vegas with different flow size and network circumstance (Top: 1 packet-size;
Middle: 30 packets-size; Bottom: 200 packets-size).

are all close to 1 with different λ values, except for the case
when λ is 1.0. Furthermore, as is shown in the bottom picture
of figure 7, the bigger λ is, the greater RTT varies. Taking
into account both the link utilization and the RTT variation,
we set the optimal value of λ as 1.2.

C. The Improvement in User Experiences

Nowadays, mobile applications (such as web browsing, file
downloading and online game playing etc.) have flooded into
people’s lives. When it comes to network service, different
applications vary greatly in data volumes. A typical mobile
scenario is simultaneous large file downloading and web
browsing. In this case, short flows and long flows will coexist
on the same network path. In a bufferbloated circumstance, the
packets of the long flow will occupy most of the buffer space,
causing great queueing delay to short ones. The consequence
of the bufferbloat problem could be the slow response to
a delay-sensitive application such as simple web page re-
quest, which seriously impacts the user experience. So the
completion time of short flows is a vital merit to evaluate
the user experience in this situation. In this experiment, we
compare the averaged short flow completion times (AFCT)
among ABRWDA, DRWA, NewReno and Vegas. We start 100
flows in each test, one is long, the others are short. The long
flow starts at the beginning of the test, and the short ones start
at different time in turn. We emphasize that none of the short
flows overlap with each other on the time dimension to avoid
the inter-influence among different short flows. The outcome
is shown in figure 8 and figure 9.

In this experiment we set three kinds of flow size (1, 30
and 200 packets) to represent clicking the mouse, small web
pages and large web components separately. For each flow
size, we change the distance between the UE and the server
by setting different propagation delays, which are selected
according to the settings in [5]. The values in figure 8 are the
AFCTs of short flows in each scenario. Comparing the three



subgraph, we can see that as a delay-based protocol acting on
the source, Vegas achieves the shortest AFCT when the flow
size is 1 packet. However, when as the flow size becomes
larger, the advantage of Vegas becomes less obvious, which
can be seen from the second and third subgraph of figure 8.
In addition, the low delay of Vegas always come with the cost
of throughput loss. DRWA and ABRWDA are both receiver-
based algorithms, and they both perform well with the flow
size being 1 or 30. Nevertheless, when the flow size is 200
packets, DRWA loses effect, and in some cases its performance
is even poorer than NewReno. In the four algorithm, only
ABRWDA keeps good performance with three flow sizes.
What’s more, AFCT’s growth of ABRWDA is very steady in
each network circumstance. Compared with NewReno, The
performance improvement factor of AFCT for ABRWDA,
DRWA and Vegas are shown in figure 9. We can find that the
performance of ABRWDA is very steady, however, neither of
Vegas and DRWA can maintain the performance as the flow
size increases.

VI. CONCLUSION

Cellular networks deploy large buffers to absorb traffic
bursts and to achieve the link layer retransmission mechanism
for better performance. As a result of the existence of link
layer reliable retransmissions and large buffers, the packet
dropping, which is referred to as the signal of the congestion
by TCP, is totally concealed. Without the packet-loss-driven
decrease in the sending window, excessively long delays
are caused, and then deteriorate the TCP performance. This
phenomenon is named as bufferbloat. In this paper, we propose
ABRWDA, a receiver-based solution to mitigate bufferbloat
in cellular networks. ABRWDA obtains the wireless link
bandwidth by means of the relationship between bandwidth
and SINR, then uses it and the estimated RTT to calculate the
receiving window which will be used to adjust the sending
window. We implement ABRWDA with NS-2, and compare its
performance with the current receiver-based solution DRWA
and the delay-based TCP version Vegas. The experimen-
t results manifest that ABRWDA can achieve considerable
performance benefits compared with other approaches.

ACKNOWLEDGMENT

The authors gratefully acknowledge the anonymous review-
ers for their constructive comments. This work is supported
in part by National Basic Research Program of China (973
Program) under Grant No. 2012CB315803 and National Nat-
ural Science Foundation of China (NSFC) under Grant No.
61225011.

REFERENCES

[1] “GLOBAL INTERNET PHENOMENA REPORT 1h 2014.” https:
//www.sandvine.com/downloads/general/global-internet-phenomena/
2014/1h-2014-global-internet-phenomena-report.pdf, 2014. [Online;
accessed 19-July-2014].

[2] “GLOBAL INTERNET PHENOMENA REPORT 1h 2013.” https:
//www.sandvine.com/downloads/general/global-internet-phenomena/
2013/sandvine-global-internet-phenomena-report-1h-2013.pdf, 2014.
[Online; accessed 19-July-2014].

[3] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, p. 40, 2011.

[4] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Communica-
tions of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[5] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling Bufferbloat in 3G/4G
Networks,” in Proceedings of the 2012 ACM conference on Internet
measurement conference, pp. 329–342, ACM, 2012.

[6] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A Lightweight Control Scheme to
Address the Bufferbloat Problem,” in High Performance Switching and
Routing (HPSR), 2013 IEEE 14th International Conference on, pp. 148–
155, IEEE, 2013.

[7] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang, “Expe-
riences in a 3G Network: Interplay Between the Wireless Channel and
Applications,” in Proceedings of the 14th ACM international conference
on Mobile computing and networking, pp. 211–222, ACM, 2008.

[8] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee, “Understanding
Bufferbloat in Cellular Networks,” in Proceedings of the 2012 ACM
SIGCOMM workshop on Cellular networks: operations, challenges, and
future design, pp. 1–6, ACM, 2012.

[9] V. Paxson, M. Allman, and W. Stevens, “TCP Congestion Control,”
RFC2581, April, 1999.

[10] M. Li, Y.-L. Wu, and C.-R. Chang, “Available Bandwidth Estimation
for the Network Paths with Multiple Tight Links and Bursty Traffic,”
Journal of Network and Computer Applications, vol. 36, no. 1, pp. 353–
367, 2013.

[11] D. Reed, “What’s Wrong with This Picture.” http://mailman.postel.org/
pipermail/end2end-interest/2009-September/007742.html, 2014. [On-
line; accessed 09-July-2014].

[12] W. K. Leong, Y. Xu, B. Leong, and Z. Wang, “Mitigating Egregious
ACK Delays in Cellular Data Networks by Eliminating TCP ACK
Clocking,” in ICNP, pp. 1–10, 2013.

[13] Y.-C. Chen and D. Towsley, “On Bufferbloat and Delay Analysis of
Multipath TCP in Wireless Networks,” in Networking Conference, 2014
IFIP, pp. 1–9, IEEE, 2014.

[14] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar, “A Receiver-Centric
Transport Protocol for Mobile Hosts with Heterogeneous Wireless
Interfaces,” in Proceedings of the 9th annual international conference
on Mobile computing and networking, pp. 1–15, ACM, 2003.

[15] Y. Xu, W. K. Leong, B. Leong, and A. Razeen, “Dynamic Regulation
of Mobile 3G/HSPA Uplink Buffer with Receiver-Side Flow Control,”
in Network Protocols (ICNP), 2012 20th IEEE International Conference
on, pp. 1–10, IEEE, 2012.

[16] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. Bershad, “Receiver Based Management of Low Bandwidth
Access Links,” in INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 1, pp. 245–254, IEEE, 2000.

[17] H. Hu, H. Yanikomeroglu, D. D. Falconer, and S. Periyalwar, “Range
Extension without Capacity Penalty in Cellular Networks with Dig-
ital Fixed Relays.” http://www.sce.carleton.ca/faculty/yanikomeroglu/
Pub/gc04 hh.pdf, 2004. [Online; accessed 15-July-2014].

[18] “Average Cell Throughput Calculations for LTE.” http://www.raymaps.
com/index.php/average-cell-throughput-calculations-for-lte/, 2011. [On-
line; accessed 15-July-2014].

[19] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck, “An In-Depth Study of LTE: Effect of Network Pro-
tocol and Application Behavior on Performance,” in ACM SIGCOMM
Computer Communication Review, vol. 43, pp. 363–374, ACM, 2013.

[20] W.-c. Feng, M. Fisk, M. Gardner, and E. Weigle, “Dynamic Right-
Sizing: An Automated, Lightweight, and Scalable Technique for En-
hancing Grid Performance,” in Protocols for High Speed Networks,
pp. 69–83, Springer, 2002.

[21] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer Science & Business Media, 2011.

[22] A. Gurtov and S. Floyd, “Modeling Wireless Links for Transport
Protocols,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 2, pp. 85–96, 2004.

[23] F. Ren and C. Lin, “Modeling and Improving TCP Performance over
Cellular Link with Variable Bandwidth,” Mobile Computing, IEEE
Transactions on, vol. 10, no. 8, pp. 1057–1070, 2011.

[24] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” Selected Areas in Communications,
IEEE Journal on, vol. 13, no. 8, pp. 1465–1480, 1995.


