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Abstract—Ethernet has some attractive properties for network
consolidation in the data center, but needs further enhancement
to satisfy the additional requirements of unified network fabrics.
Congestion management is introduced in Ethernet networks to
avoid dropping packets due to congestion. The BCN (Backward
Congestion Notification) mechanism is a basic element of several
standard drafts, and its stability underlies normal network oper-
ations. Because the linear stability analysis method is incapable
of handling the nonlinearity of the variable structure control
employed by the BCN mechanism, some particular phenomena
are unexposed and the insights are insufficient. In this paper, we
propose the concept of strong stability of the queuing system to
satisfy the requirements of no dropped packets in the data center,
and build a fluid-flow analytical model for the BCN congestion
control system. Considering the nonlinearity involved in the rate
regulation laws, we classify the system into different categories
according to the shapes of phase trajectories, and conduct a
nonlinear stability analysis using phase plane analysis techniques
on a case by case basis. The analysis details can provide a
comprehensive understanding about the behaviors of the overall
congestion control system. Finally, we also deduce an explicit
stability criterion presenting the parameters constraints for the
strongly stable BCN system, which can provide straightforward
guidelines for proper parameter settings.

Index Terms—Data Center Ethernet, Backward Congestion
Notification, Strong stability and Phase Trajectory.

I. INTRODUCTION

In today’s data centers, it is common to deploy an Ethernet

network for IP traffic, one or two storage area networks

(SANs) for block mode Fibre Channel traffic, and an Infini-

Band network for interprocess communication (IPC) traffic.

As data centers grow in size and complexity, the effort to

manage different interconnect technologies for traffic from

multiple applications is becoming resource and cost inten-

sive. Data center networking will become a new paradigm

for providing high-bandwidth and low-latency interconnection

fabrics to computing and storage applications. The deployment

of unified network fabrics in data centers is expected to be

a methodical process. It offers many research challenges in

the areas of computing, storage, virtualization and networking.

It also causes major shifts in the industry, and witnesses the

convergence of the different industries of computing, storage

and networking.

Ethernet is the most widespread wired local area network

technology because of its low cost, wide availability, simplic-

ity, and broad compatibility. However, in the past its bandwidth

limitations kept it from being a candidate for unified fabric in

data centers. With recent advances in Ethernet speeds and the

development of 40 and 100 Gbps, Ethernet has become an

attractive choice for unified network fabrics in data centers

[1]. However, Ethernet networks being a best effort datagram

service still need further enhancement to satisfy additional

requirements, such as low latency, high reliability, and no

packets loss. In the IEEE standard body, several working

groups are addressing these issues to ensure that Ethernet will

be equipped to meet data center’s requirements. This enhanced

Ethernet is called Data Center Ethernet (DCE).

DCE is an architectural collection of Ethernet extensions

designed to improve Ethernet networking and management in

the data center, which has been well thought out to provide

the next-generation infrastructure for data center networks by

taking advantage of classical Ethernet’s strengths and adding

several crucial extensions, such as priority-flow control [?],

enhanced transmission selection [?], shortest path bridging [?]

and end-to-end congestion management [3].

Avoiding frame drops is mandatory for carrying native

storage traffic, since storage traffic does not tolerate frame

drops. SCSI is designed with the assumption of running over

a reliable transport in which failures are rather rare. Fibre

Channel is the primary protocol used to carry storage traffic,

and it avoids frame drops through a link flow control mech-

anism based on credits called buffer-to-buffer flow control.

Historically Ethernet has been a lossy network, since Ethernet

switches do not use any mechanism to signal to the sender that

they are out of buffers [2]. A few years ago, IEEE 802.3 added

a PAUSE mechanism to Ethernet, which can be used to stop

the sender for a period of time. However it cannot properly

alleviate congestion and maintain high throughput because

the congestion can roll back from switch to switch, affecting

flows that do not contribute to the congestion, but happen to

share a link with flows that do. To deal with this problem

and be competent in unified network fabrics in data centers,

the link flow control is introduced in Ethernet networks to

avoid packets dropping due to transient congestions. The

IEEE 802.1 standard committee has launched a new task

group to develop the end-to-end congestion control mechanism

for switched Ethernet networks [3], and four proposals are

currently discussed.

As a general congestion management scheme, the BCN

mechanism is adopted by several proposals. Its stability is

crucial for normal network operation. The theoretical stability
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analysis of BCN will definitely provide essential insights,

which are beneficial for confirming a proper congestion control

algorithm and accelerating the finalization of the specification.

In [4], the inventors of BCN applied the stability criterion in

the classical linear control theory to analyze the BCN mecha-

nism and provided the stable sufficient condition satisfied by

parameters. The limitation of their work is that the overall

congestion control system governed by the BCN mechanism

is intentionally divided into two linear subsystems to analyze

their stability independently, and the transient behavior of the

switching process between two subsystems and its impact

on the system stability are neglected, thus some important

phenomena and properties are likely unexplored. In this paper,

we model BCN behavior as an autonomous second-order

system described by a set of nonlinear ordinary differential

equations using fluid-flow approximation technique. Remain-

ing the nonlinearity involved in the variable structure rate

control of the BCN mechanism, and taking the switching

process into account, we conduct a nonlinear stability analysis

applying the phase plane method to provide a comprehensive

understanding about the behaviors of the overall congestion

control system, and deduce an explicit stability criterion.

The remainder of this paper is organized as follows. The

background of congestion control in DCE networks and the

basic BCN mechanism are introduced in Section II. Subse-

quently, the analytical model of the BCN congestion control

system is built, and the concept of strong stability is intro-

duced. In Section IV, based on various phase trajectories of

the BCN system, the stability is analyzed case by case and

a stability criterion is deduced. Finally, the conclusions are

drawn in Section V.

II. BACKGROUND

A. Congestion Control in Ethernet

While numerous investigations have been made on con-

gestion control in TCP/IP networks, Ethernet networks, even

after 30 years of their invention, run without congestion

control in the link layer. To be competent for data center

applications, it is crucial to introduce congestion management

in the link layer for Ethernet networks. The main tasks include:

(1) Providing congestion detection and information feedback

to push congestion from the core towards the edge of the

network; (2) Supporting rate control at the edge switches to

shape flows causing congestion. In addition, an appropriate

congestion management method for Ethernet networks should

be compatible with the current IEEE802.1/802.3 standards and

also work in harmony with the upper layer congestion control

scheme, such as TCP flow control.

The IEEE 802.1Qau working group [3] is developing a new

specification for congestion management in Ethernet networks.

Until now, the specification has not been finalized. Four

representative proposals, however, have been discussed and

investigated. The general Ethernet Congestion Management

(ECM) framework employing the Backward Congestion No-

tification (BCN) mechanism was proposed by D. Bergamasco

[5]. The basic mechanism of BCN was initially used in frame

Edge Switch Core Switch 

Regulator Samplingpackets

BCN message q(t)qsc q0qoff(t)

Fig. 1. Framework of BCN

relay networks called Backward Explicit Congestion Notifi-

cation (BECN) [6]. Compared to FECN (Forward Explicit

Congestion Notification ) [6], the control messages in BCN

are sent directly from switches back to sources when the

congestion happens. Due to early congestion indication, BCN

is more responsive to congestion, which is attractive for super

high-speed Ethernet networks, but needs switches to generate

extra backward packets to carry control messages. Unlike

traditional BECN whose control message only carries binary

congestion indication, the BCN mechanism also sends back the

current queue status, including queue length and variation, to

guide the adjustment of sending rate (described in detail later).

Raj Jain argued for the explicit feedback of allowed rates

and proposed the Forward Explicit Rate Advertising (FERA)

mechanism [7], which is a variant of ERICA developed for

explicit flow control in ATM networks [8]. The researchers

at IBM Zurich lab combined some ideas of BCN and FERA

to develop a new scheme called Explicit Ethernet Congestion

Management (E2CM) [9]. The fourth proposal is quantized

congestion notification (QCN) [10] in which the ECM queue

feedback is quantized to a few bits and the network only

provides negative feedback. Except for FERA, the other

three proposals, including ECM, E2CM and QCN, follow the

paradigm of BCN and send the queue dynamics back to the

sources to instruct rate adjustment. In other words, the BCN

mechanism is a cornerstone for most proposals of congestion

control in DCE networks. For the convenience of modeling

and analysis, we firstly describe the main components of the

BCN mechanism in the next subsection.

B. BCN mechanism

We shall only introduce those parts of the BCN mechanism

which are relevant for our stability analysis, and omit concrete

implementation. The whole description can be seen in [5].

BCN is a rate-based closed-loop feedback control mecha-

nism. Its framework and main components are shown in Fig.1.

The technical goal of BCN is to hold the queue length of the

core switch at equilibrium point q0 so that the buffer is neither

over-utilized nor under-utilized. The core switches monitor

the instantaneous queue length q(t). If q(t) exceeds a high

threshold qsc > q0, then the network is regarded as severely

congested and the core switch sends out the PAUSE frames

defined in IEEE 802.3x to require all its uplink neighbors to

stop forwarding packets. In addition, the core switches sample

the incoming packets with a deterministic probability pm,

and also simply count the number of arrival and departure

packets to obtain the difference of instantaneous queue length
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Fig. 2. Format of BCN message

Δq(t) in a sampling interval. When a packet is sampled, the

core switches determine the congestion level on the link by

computing the key variable σ, which consists of a weighted

sum of the instantaneous queue length offset and Δq(t) over

the last sampling interval:

σ(t) = [q0 − q(t)] − wΔq(t) (1)

where w is a weight parameter. The core switches may send a

BCN message to the source of the sampled packet if necessary.

The BCN messages follow 802.1Q VLAN tag format to ensure

the coexistence and interoperability between BCN-aware and

BCN-unaware switches. The key fields in BCN message are

shown in Fig.2. Here, the 48-bits DA and SA fields contain

the source address of the sampled packet and the address of

the switch, respectively. EtherType tells the switches and end

stations whether it is a BCN message. The CPID field is the

ID of the congestion point and its purpose is to univocally

identify a congestion entity, which should at least include the

MAC address of the switch interface. The FB field carries the

key measure σ(t). If σ(t) > 0, BCN message is positive, else

negative. When a normal BCN message reaches the congestion

reaction point, which refers to a rate regulator associated with

the source receiving the BCN message and is usually located in

network interface card in the edge switch, the reaction point

adjusts its sending rate using a modified Additive Increase

and Multiplicative Decrease (AIMD) algorithm since it has

been proven to be stable, convergent and fair under common

network environments [11]. AIMD is defined in BCN as

follows:

r(t) ←
{

r(t) + GiRuσ(t) if σ(t) > 0
r(t)[1 + Gdσ(t)] if σ(t) < 0 (2)

where r(t) is the rate of sources, Ru is the increase rate

unit parameter, Gi and Gd are the rate additive increase

and multiplicative decrease gains, respectively. They need to

be appropriately set by the network manager. A congestion

reaction point receiving a negative BCN message will associate

itself with the congestion point identified by the corresponding

CPID. Its subsequent packets will contain a rate regulator tag

(RRT) to carry this CPID. If these packets are sampled by

the core switch, the value of CPID matches with the switch’s

CPID, a possible positive BCN message is generated and sent

back the source of the sampled packets when q(t) < q0, or

else no BCN message is sent.

III. ANALYTICAL MODEL OF BCN

A. Assumption

In this section, we firstly build an analytical model of

the BCN mechanism. Considering regular and symmetrical

network topologies in data centers, such as Monsoon [12], Fat-

Tree [13] and D-Cell [14], and special traffic patterns driven

by the parallel reads/writes in cluster file systems, such as

Lustre [15] and Panasas [16], we assume that the sources

are homogeneous, namely they have the same characteristics,

follow the same routes, and experience the same round-trip

propagation delays. In addition, the propagation delay in DCE

networks is normally within the order of a few microseconds

since the diameter of the network is only a few hundreds

meters. Compared with the queuing delay in the order of

several tens or hundreds microseconds, the propagation delay

could be negligible. Furthermore, since links are assumed to

be of high capacity in DCE networks, the number of bit

stream in the links is so large that it appears like a continuous

flow fluid, the fluid-flow approximation extensively used in

network modeling work (in [17] and [4] etc.) is assumed to

be practicable in our investigation.

B. Modeling

Considering the queue associated with the bottleneck link,

and assuming that the queue length q(t) is continuous and

differentiable and the propagation delay is negligible, we have:

dq(t)
dt

=
N∑

i=1

ri(t) − C (3)

where ri(t) is the rate of the i-th source in the link, q(t)
is the queue length, N is the number of active flows and C
denotes the capacity of the bottleneck link. Because of the

homogeneity of sources in DCE networks, (3) can be written

as
dq(t)
dt

= N

[
ri(t) − C

N

]
(4)

The difference of the queue length Δq(t) in a sampling interval

is

Δq(t) = Δt
dq(t)
dt

=
1

pmC

dq(t)
dt

(5)

where Δt is the average sampling period. Combining (1), (4)

and (5), the feedback variable σ(t) in the BCN message can

also be rewritten as

σ(t) = −
{

[q(t) − q0] +
wN

pmC

[
ri(t) − C

N

]}
(6)

Referring to (2), we readily obtain

dri(t)
dt

=
{

GiRuσ(t) σ(t) > 0
Gdσ(t)ri(t) σ(t) < 0 (7)

So far, the dynamic of BCN congestion control system in DCE

networks can be described by a set of first order ordinary

nonlinear differential equations (4) and (7), which consist

of a typical autonomous system. It is noted that equation

(7) is characteristic of segmented nonlinearity. The switching

function σ(t) = 0 divides the whole state space into two parts.

The behaviors in the different state spaces are determined by

the different differential equations.
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C. Understanding of BCN Stability

The BCN mechanism aims to limit the queue length within

buffer size. Since the empty queue wastes the link resource and

the buffer overflow results in dropping packets, the rational

solution is to regulate the queue length to the reference.

Therefore, the stability of queue can be generally regarded

as the stability of the whole system. In some investigations

of Internet congestion control, the stability criterions in the

classical linear control theory are straightforwardly used to

evaluate system stability, such as [18] and [19]. The stability

analysis of the BCN system in [4] follows the same paradigm.

After the BCN system is approximated as two linear isolated

subsystems, the conditions for the stability of each of the

two subsystems are derived separately using Nyquist stability

criterion. The sufficient condition for the stability of the overall

BCN system is obtained through combining the conditions

for stable subsystems stiffly. The conclusion can provide

some insights, but its limitations are obvious. Because the

nonlinearity of the variable structure control employed by the

BCN mechanism is missed, some particular phenomena are

not opened out. For example, the stability criterion given in [4]

cannot definitely explain why queue oscillations occur in BCN

system. Moreover, the conclusion in [4] can only tell the truth

of steady behaviors in BCN system. When taking the physical

constraint of buffer into account, packet droppings due to

the transient overshoot of queue system cannot be properly

described by the analysis in [4]. Therefore, in this work, we

will use the phase plane analysis method in nonlinear control

theory to conduct a comprehensive and in-depth investigation

on transient and steady behaviors in BCN system where the

nonlinearity of the variable structure control and the physical

constraint of buffer are held.

The phase plane analysis is a graphic method to analysis

the transient phenomena of second order ordinary differential

equation. It can not only analyze the stability and oscillations

but also give an explicit trajectory of the dynamics of the sys-

tem, much better than displaying variables against time. The

differential equations (4) and (7) tell that the queue controlled

by the BCN mechanism is a second order nonlinear system.

Assuming the phase trajectory of the BCN queue system is

the curve l{q̇(t), q(t)} where q̇(t) = dq(t)
dt , we illustrate the

relationship between phase trajectories and queue stability.

Some possible shapes of phase trajectories are shown in Fig.

3, where the queue motion is restricted to the strip shaded area

on the phase plane because of the physical limitations of buffer

(B denotes the buffer size). The system equilibrium state lies at

point (q0,
C
N ), and the switching line divides the shaded area

into two parts, corresponding to rate decrease and increase,

respectively. Apparently, the queue motions described by the

phase curves l1 and l2 are unstable since they diverge from the

equilibrium point. It is not difficult to obtain the similar con-

clusion using the stability criterions in control theory, just like

in [4]. Naturally, these stability criterions also suggest that the

queue motions described by the other phase curves is stable.

Seemingly, the queue motions described by the phase curves

B0

q0

C/N

q(t)

)(tq�

0)( =tσ
Switching Line

①

②

⑥

③

④

⑤

⑦

Rate Decrease Region

Rate Increase Region

Equilibrium Point

⑧

⑨

Fig. 3. Phase trajectories

l3 and l4 are stable since both of them eventually approach the

equilibrium point. However, the movements along the dashed

lines would never occur due to the physical limitations of the

buffer. The queue stays either full or empty, which implies that

the incoming packets are dropped or the link is wasted. The

linear stability analysis, which does not take the nonlinearity

of physical limitation of buffer into account, is incapable of

opening up this phenomena. To overcome it, we introduce

a more meaningful definition of the stability with respect to

queue analysis in congestion control in DCE networks.

Definition 1: ∃t0 > 0, when t > t0, if and only if 0 <
q(t) < B, the queue system is stable.

By this definition, the queue described by the phase curves l3
or l4 are unstable since the transient overshoot empties buffer

or causes overflow, which conflicts with the design goal of the

BCN mechanism, namely improving throughput and avoiding

packet droppings. To distinguish this definition from common

definitions of stability, which are strictly defined by Lyapunov

in control theory [20], we call it strong stability. According to

this definition, the BCN system described by the phase curves

l5, l6, l7, l8 and l9 (exclusive of l1, l2, l3 and l4) is of strong

stability.

In addition, there is a peculiar branch of phase trajectories,

consisting of the curve l5 in the rate decrease region and the

curve l7 in the rate increase region in Fig.3. It is a closed

trajectory in the phase plane, which implies that the queue

motion appears to be periodic oscillations. This phenomenon

is called limit cycle, appearing in nonlinear systems frequently

[21]. The linear stability analysis is incapable of revealing

it. Even if the limit cycle could be stable, it would impose

a negative impact on the fairness of the congestion control

mechanism since the system can hardly converge towards the

equilibrium point eventually. Therefore, it should be avoided

through design of a proper rate regulation law or by fixing the

appropriate parameter settings.
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IV. STABILITY ANALYSIS

Considering the limitations in linear stability analysis, we

use the phase plane techniques in nonlinear control theory

to analyze the stability of the BCN system. As explained in

the previous subsection, the main advantage of this approach

is particularly suitable for the analysis of the system with

segmented nonlinear characteristics as the phase plane can be

divided into regions corresponding to operation on a particu-

lar linear segment of the nonlinearity. The BCN congestion

control system just possesses these properties. In addition,

the transient behaviors of switching process between different

regions can be completely captured.

A. General property of BCN system

Let a = RuGiN, b = Gd and k = w
pmC , and define the

variable x(t) = q(t) − q0 and y(t) = Nri(t) − C, then the

equilibrium point becomes the origin (0, 0). The switching

function becomes σ(t) = −[x(t) + ky(t)], and equations (4)

and (7) are transformed into:⎧⎨
⎩

dx(t)
dt = y(t)

dy(t)
dt =

{ −a[x(t) + ky(t)] σ(t) > 0
−b[y(t) + C][x(t) + ky(t)] σ(t) < 0

(8)

Define functions f1(t) = y(t), f2(t) = −a[x(t) + ky(t)], and

f3(t) = −b[y(t) + C][x(t) + ky(t)]. Since for i = 1, 2, 3 and

any �z = (z1, z2) = (x(t), y(t))

‖ fi(t, �z1) − fi(t, �z2) ‖≤ L ‖ �z1 − �z2 ‖
Namely Lipschitz condition is satisfied, the set of nonlinear

differential equations (8) have a solution uniquely determined

by the initial value (x0, y0) [22]. Also since x = 0, y = 0 is

unique solution of a set of equations{
f1(t) = 0
f2(t) = 0 or

{
f1(t) = 0
f3(t) = 0

the origin is unique singular point of the nonlinear system (8).

Lyapunov has shown that the stability of and the behavior of

the trajectories in the neighborhood of a singular point can be

found from a linearized version of nonlinear differential equa-

tions about the singular point [23]. Expanding the equations

(8) in a Taylor series at the singular point, i.e. the equilibrium

point (0, 0), the equations of the first approximation are⎧⎨
⎩

dx(t)
dt = y(t)

dy(t)
dt =

{ −ax(t) − aky(t) σ(t) > 0
−bCx(t) − bw

pm
y(t) σ(t) < 0

(9)

The eigenvalues of system (9) are roots of its characteristic

equation:

λ2 + miλ + ni = 0 i ∈ {1, 2} (10)

where m1 = ak and n1 = a as σ(t) > 0, or m2 = bw
pm

and

n2 = bC as σ(t) < 0.

Considering the physical meaning of the network parame-

ters, the coefficients mi and ni must be positive. According

to Routh-Hurwitz stability criterion [24], we can straightfor-

wardly get the following proposition.

Proposition 1: Both increasing and decreasing rate subsys-

tems are stable in the context of pure linear control theory

analysis.

Remarks: Without considering the nonlinear factors in the

BCN congestion management system, such as buffer limitation

and variable structure control, the conclusion drawn from

separate analysis to subsystems is impractical because the

transient behavior of switching between two subsystems is

missed.

B. Typical phase trajectories

If the physical limitations of the buffer and the transient

behavior of switching procedures are taken into account, we

need to carefully check the phase trajectories to judge whether

the BCN system is strongly stable. The phase trajectories of

system (9) depend on its eigenvalues. Obviously,

λ1,2 =
−mi ±

√
m2

i − 4ni

2
(11)

Case1: m2
i − 4ni < 0

In this case, the eigenvalues are complex conjugates λ1,2 =
α ± jβ, here α = −mi/2 and β =

√
4ni − m2

i /2. The

solutions of a set of differential equations (9) are:{
x(t) = Aeαt cos(βt + ϕ)
y(t) = Aαeαt cos(βt + ϕ) − Aβeαt sin(βt + ϕ) (12)

here A =
√

(α2 + β2)[x(0)]2 − 2αx(0)y(0) + [y(0)]2/β,

ϕ = − arctan y(0)−αx(0)
βx(0) , where x(0) and y(0) are

the initial values. A compact form of (12) is defined

as {x(t), y(t)} = H{t|x(0), y(0)}. Accordingly, t =
H−1{x(t), y(t)|x(0), y(0)} denotes solving t from equations

(12) when {x(t), y(t)} is known. The curves H {x(t), y(t)}
are phase trajectories in this case .

Multiplying both sides of the first equation in (12) by −α,

then adding both sides of the second equation in (12), we have

y(t) − αx(t) = −Aβeαt sin(βt + ϕ) (13)

Combining (13) and the first equation in (12), we can yield

[y(t) − αx(t)]2 + [βx(t)]2 = (Aβ)2e2αt (14)

tan (βt + ϕ) = −y(t) − αx(t)
βx(t)

(15)

Solving t from (15), then substituting it into (14), we have

[y(t)−αx(t)]2+[βx(t)]2 = c1 exp
{
−2α

β
arctan

y(t) − αx(t)
βx(t)

}
(16)

here c1 = (Aβ)2 exp(− 2αϕ
β ). Let r(t) cos θ(t) = βx(t) and

r(t) sin θ(t) = αx(t) − y(t). Since tan θ(t) = −y(t)−αx(t)
βx(t) =

tan (βt + ϕ), the form of (16) in polar coordinates should be{
r(t) =

√
c1 exp

{
α
β θ(t)

}
θ(t) = βt + ϕ

(17)
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Fig. 4. Phase trajectories as m2
i − 4ni < 0

Thus, the phase trajectory H {x(t), y(t) | (x(0), y(0))}
beginning at point (x(0), y(0)) actually is a logarithmic spiral.

Since α < 0 and β > 0, r decreases but θ increases as time

t increases, which implies that the motion along the phase

trajectory eventually approaches the origin. Therefore, the

singular point of the system is a stable focus. Fig.4 illustrates

two branches of these phase trajectories originating from dif-

ferent initial points. Since y(t) = dx(t)
dt , x(t) reaches its local

extrema when y(t) = 0, namely x(t) crosses the horizontal

axis with its local extremum. Substituting y(t) = 0 into (12),

we can obtain tan(βt + ϕ) = α
β . Since the inverse tangent

is a multivalued function, x(t) has infinite local extrema as

shown in Fig.4. As y(0) > 0, the local extremum closest to

the initial point (x(0), y(0)) is the local maximum denoted by

maxs
x{x(0), y(0)}, while y(0) < 0, it is the local minimum

denoted by mins
x{x(0), y(0)}. Let t∗ denote the time at which

the system reaches the closest extremum. Since t∗ ≥ 0, we

have

t∗ =

{
1
β [tan−1 α

β + tan−1 y(0)−αx(0)
βx(0) ] x(0)y(0) ≥ 0

1
β [π + tan−1 α

β + tan−1 y(0)−αx(0)
βx(0) ] x(0)y(0) < 0

(18)

where tan−1(z) denote the principal value of the inverse

tangent. Substituting (18) and cos(βt + ϕ) = ±β/
√

α2 + β2

into (12), we readily obtain

s
max

x
{x(0), y(0)} =

Aβ√
α2 + β2

exp(αt∗) (19)

s
min

x
{x(0), y(0)} = − Aβ√

α2 + β2
exp(αt∗) (20)

Case2: m2
i − 4ni > 0

In this case, there are two different negative real eigenvalues.

Assuming λ1 < λ2 < 0, the solutions of differential equations

(9) are: {
x(t) = A1e

λ1t + A2e
λ2t

y(t) = A1λ1e
λ1t + A2λ2e

λ2t (21)

 x

 y

 O  B−q0
 −q0

 (x1(0),y1(0))

 (x2(0),y2(0))

 maxx
p(x2(0),y2(0))

 minx
p(x1(0),y1(0))

 y=λ1x

 y=λ2x

Fig. 5. Phase trajectories as m2
i − 4ni > 0

where

A1 =
λ2x(0) − y(0)

λ2 − λ1
; A2 =

λ1x(0) − y(0)
λ1 − λ2

A compact expression of (21) is defined as {x(t), y(t)} =
F{t|x(0), y(0)}. The curves F{x(t), y(t)} are phase trajec-

tories in this case.

Multiplying both sides of the first equation in (21) by λ1

and λ2, respectively, then subtracting the results from both

sides of the second equation in (21), we have:

y(t) − λ1x(t) = (λ2 − λ1)A2e
λ2t (22)

y(t) − λ2x(t) = (λ1 − λ2)A1e
λ1t (23)

If (x(0), y(0)) satisfies with y(0)−λ1x(0) = 0, then A2 = 0.

From (22), we have

y(t) − λ1x(t) = 0 (24)

If y(0) − λ2x(0) = 0, in the same way, we also have

y(t) − λ2x(t) = 0 (25)

The phase trajectories defined (24) and (25) are particular.

Both of them are straight lines. As A1 	= 0 and A2 	= 0, Com-

bining (22) with (23), we make some algebraic operations, and

then yield

[y(t) − λ2x(t)]λ2 = c2[y(t) − λ1x(t)]λ1 (26)

where

c2 =
[(λ1 − λ2)A1]λ2

[(λ2 − λ1)A2]λ1
=

[y(0) − λ2x(0)]λ2

[y(0) − λ1x(0)]λ1

Let u(t) = y(t) − λ1x(t) and v(t) = y(t) − λ2x(t), equation

(26) is transformed into

v(t) = λ2
√

c2u(t)
λ1
λ2 (27)

Hence, the phase trajectory F{x(t), y(t) | (x(0), y(0))}
originating from the initial point (x(0), y(0)), here y(0) 	=
λ1,2x(0), is analogous to a parabola. Some phase trajectories

originating from various initial points are depicted in Fig.5.

Since the motion along the phase trajectory eventually ap-

proaches the origin, the singular point is called a stable node.
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As y(t) = 0, x(t) arrives its global extremum denoted by

mump
x{x(0), y(0)}:

mump
x{x(0), y(0)} = −

{
(−λ1)λ1 [y(0) − λ2x(0)]λ2

(−λ2)λ2 [y(0) − λ1x(0)]λ1

} 1
λ2−λ1

(28)

mump
x{x(0), y(0)} is the maximum as y(0) > 0 or the

minimum while y(0) < 0
Case3: m2

i − 4ni = 0
In this case, two real eigenvalues are identical, i.e. λ1,2 = λ =
−mi

2 .The solutions of equations (9)become:{
x(t) = (A3 + A4t)eλt

y(t) = (A3λ + A4 + A4λt)eλt (29)

where A3 = x(0) and A4 = y(0) − λx(0). A compact form

of (29) is defined as {x(t), y(t)} = L{t|x(0), y(0)}, and the

curves L {x(t), y(t)} describe the phase trajectories in this

case.

From (29), we can get

y(t) − λx(t) = A4e
λt (30)

If (x(0), y(0)) satisfies with y(0) − λx(0) = 0, then A4 = 0.

Thus, the phase trajectory originating from (x(0), y(0)) is a

straight line:

y(t) − λx(t) = 0 (31)

From (29), we can also have

y(t)(A3 + A4t) = x(t)(λA3 + A4 + A4λt) (32)

Solving t from (32), and substituting it into (30)

y(t)−λx(t) = A4 exp
{

λ
A4x(t) − A3[y(t) − λx(t)]

A4[y(t) − λx(t)]

}
(33)

Since λ < 0, limt→∞ teλt = 0. Therefore, the movement

along the phase trajectory eventually approaches the origin.

The singular point is a stable node. Although the solution

form of equations (9) in this case is different from that of

the previous case, the phase trajectories L {x(t), y(t)} are

similar to F{x(t), y(t)}. The only difference is that the former

contain one straight line, but the latter include two straight

lines. Because of limited space, we omit the illustration of the

phase trajectory in this case. As y(t) = 0, x(t) reaches its

unique extremum denoted by mumu
x{x(0), y(0)}:

mumu
x{x(0), y(0)} = −A4

λ
e−

λA3+A4
λA4 (34)

mumu
x{x(0), y(0)} is the maximum as y(0) > 0 or the

minimum while y(0) < 0.

C. Stability analysis of BCN system

Next, according to the definition of strong stability, we

use the phase plane techniques to analyze the stability of the

BCN system described by equations (9) with linear segmented

nonlinear properties.

Generally, the initial state of the BCN system is q(0) = 0
and ri(0) = μ, here μ is the initial rate of sources. This

initial state corresponds to the point (−q0, Nμ − C) in the

 t

 x

 −q0

 maxs
x(x1

d(0),y1
d(0))

 (b)

 mins
x(x2

i (0),y2
i (0))

 t

 y

 (c)

 x

 y

 B−q0 −q0
 (x1

i (0),y1
i (0))

 (x1
d(0),y1

d(0))
 T1

i
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 D Region

 (a)

 (x2
d(0),y2

d(0))

 (x2
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 T2
i

 T2
d

Fig. 6. Phase trajectory and dynamic behaviors as a <
4p2

mC2

w2 and b <
4p2

mC

w2

phase plane. Whatever rate control laws are employed, the

system will move from the point (−q0, Nμ − C) to the

point (−q0, 0) along the straight line x = −q0. In other

words, the point (−q0, 0) is reachable at all time. Because

the queue is always empty in this accelerating stage, the

core switch can hardly sense the queue variance, and y(t)
complies with the regulation law

dy(t)
dt = aq0. Thus, this

acceleration will last T0 = C−Nμ
aq0

. Since the phase trajectory

of the warm-up process is identical for any regulation laws

and the point (−q0, 0) is always reachable, in our phase

plane analysis, assume the initial point is (−q0, 0), namely

the queue associated with the bottleneck link is empty and the

aggregation rate of N sources equal to the capacity of link

C. Referring to Fig.4 and Fig.5 and considering the switching

line σ(t) = x(t) + ky(t) = 0, the phase trajectories of the

dynamic system defined by the nonlinear differential equations

(9) would present rather various shapes if the parameters are

unconstrained. Taking the physical limitations of parameters

and their relationship into account, there are only six basic

types of phase trajectories. Since m2 = bw
pm

= kbC, equation

(10) can be rewritten in the following form

λ2 + kniλ + ni = 0 i ∈ {1, 2} (35)

where n1 = aN as σ(t) > 0, or n2 = bC as σ(t) < 0.

As the characteristic equation (35) has two different nega-

tive real roots λ1,2 = −kni∓
√

(kni)2−4ni

2 , and λ2 + 1
k =√

(k2ni−2)2−4−(k2ni−2)

2k < 0, we have − 1
k > λ2 > λ1.

Thus, some theoretically feasible phase trajectories impossibly

appear in the actual BCN system. Subsequently, we discuss

the stability of the BCN queue moving along six basic phase

trajectories case by case.

Case1: a <
4p2

mC2

w2 and b <
4p2

mC
w2

The queue moves along H -type phase trajectories (i.e.

logarithmic spiral) in rate increase and decrease regions. A

trajectory is shown in Fig.6 (a), where the kth round of

rate increasing and decreasing starts from (xk
i (0), yk

i (0))1 and

1To avoid confusion, the k-th power of xk
i (0) is denoted by [xk

i (0)]k
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Fig. 7. Limit cycle motion

(xk
d(0), yk

d(0)) and lasts T k
i and T k

d , respectively. Fig.6 (b)

and Fig.6 (c) describe the evolution of queue length and

its variance, respectively. Let Ak
i , ϕk

i and Ak
d, ϕk

d denote the

coefficients of (12) in the the kth round of rate increasing and

decreasing, respectively. Since (x1
i (0), y1

i (0)) = (−q0, 0), and

by the expressions of coefficients in (12), we have

A1
i =

2q0
√

a√
4a − a2k2

; ϕ1
i = − tan−1(

ak√
4a − a2k2

)

Let x(t) = x1
d(0), y(t) = y1

d(0) in (12), and since x1
d(0) =

−ky1
d(0), we can obtain

T 1
i = H−1{x1

d(0), y1
d(0) | −q0, 0}

=
2√

4a − a2k2
[tan−1(

2 − ak2

k
√

4a − a2k2
) − ϕ1

i ]

and

x1
d(0) = −kA1

i

√
4a − a2k2

2
e−

ak
2 T 1

i

As both x1
d(0) and y1

d(0) are determined, we readily get

A1
d =

2|y1
d(0)|√

4bC − (kbC)2
; ϕ1

d = tan−1(
2 − bk2C

k
√

4bC − (kbC)2
)

Since x1
d(0)y1

d(0) < 0, we can get the maximum of x(t) by

Equation (19)

max1 {x(t)} = maxs
x

{
x1

d(0), y1
d(0)

}
= |x1

d(0)|
k
√

bC
exp {αd

βd
(π + tan−1 αd

βd
− ϕ1

d)}
(36)

where αd

βd
= −bkC√

4bC−(kbC)2
. In the same way, we can also get

T 1
d =

2π√
4bC − (kbC)2

,

x2
i (0) = −A1

d

k
√

4bC − (kbC)2

2
e−

bkC
2 T 1

d ,

A2
i =

2|x2
i (0)|√a

k
√

4a − a2k2
and ϕ2

i = tan−1(
2 − ak2

k
√

4a − a2k2
)

 t

 x

 −q0

 maxs
x(x1

d(0),y1
d(0))

 (b)
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 y

 (c)
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Fig. 8. Phase trajectory and dynamic behaviors as a >
4p2

mC2

w2 and b <
4p2

mC

w2

Substituting them into (20), yield

min1 {x(t)} = mins
x

{
x2

i (0), y2
i (0)

}
= − |x2

i (0)|
k
√

a
exp{αi

βi
[π + tan−1 αi

βi
− ϕ2

i ]}
(37)

where αi

βi
= −ak√

4a−a2k2 . Therefore, we have the following

proposition.

Proposition 2: As a <
4p2

mC2

w2 and b <
4p2

mC
w2 , if

max1{x(t)} < B − q0 and min1{x(t)} > −q0, here

max1{x(t)} and min1{x(t)} are defined by (36) and (37)

respectively, then the BCN system is strongly stable.

In this case, there is a special queue motion. when xk
i (0) =

xk+1
i (0) or xk

d(0) = xk+1
d (0), the limit cycle appears. Fig.7

illustrates a typical limit cycle motion, where the queue of

switches and the rate of sources oscillate with an identical

amplitude, and the system cannot eventually approach the

equilibrium point. This phenomena has been observed in some

experiments of [4], but the analysis based on linear control

theory cannot provide reasonable explanations.

Case2: a >
4p2

mC2

w2 and b <
4p2

mC
w2

The phase trajectory of the queue is a parabola in the rate

increasing region, but a spiral in the rate decreasing region.

The system motion in this case is shown in Fig.8. As in the

aforementioned discussion, − 1
k > λ1,2, thus the queue phase

trajectory must traverse the switching line x + ky = 0 in the

second quadrant. After traversing the switching line for the

second time in the fourth quadrant, it gradually approaches

the equilibrium point and the straight line y = λ2x, but

never traverse the latter because it is an asymptote of the

phase trajectory. Substituting x1
i (0) = −q0, y

1
i (0) = 0 and

y1
d(0) = −kx1

d(0) into (26), we can get

y1
d(0) = q0

[
(k + 1/λ1)λ1

(k + 1/λ2)λ2

] 1
λ2−λ1

Following the same method in case 1, we also have

max2 {x(t)} = q0√
bC

[
(k+1/λ1)

λ1

(k+1/λ2)λ2

] 1
λ2−λ1 exp

{
αd

βd
[π

+ tan−1 αd

βd
− ϕ1

d]
} (38)
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Fig. 9. Phase trajectory and dynamic behaviors as a <
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mC2
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where αd

βd
= −bkC√

4bC−(kbC)2
, and λ1,2 = −ka∓√

a2k2−4a
2 . Thus,

we have the proposition.

Proposition 3: As a <
4p2

mC2

w2 and b <
4p2

mC
w2 , if

max2{x(t)} < B − q0, here max2{x(t)} is determined by

(38), then the BCN system is strongly stable.

Case3: a <
4p2

mC2

w2 and b >
4p2

mC
w2

Contrary to case 2, the phase trajectory is a logarithmic spiral

in the rate increasing region, but a parabola in the decreasing

region. Fig.9 illustrates the representative behaviors of the

BCN system in this case. After crossing the switching line,

the phase trajectory moves directly to the equilibrium point.

The queue motion in phase plane is limited in the second

quadrant because the line y = λ2x is a asymptote for the phase

trajectory originating from the initial point (x1
d(0), y1

d(0)) as

y1
d(0) 	= λ2x

1
d(0), which implies that the queue length does

not overshoot the reference value q0 as shown in Fig.9 (b).

Therefore, the BCN system is strongly stable forever in this

case.

Case4: a >
4p2

mC2

w2 and b >
4p2

mC
w2

In this case, the phase trajectory is a parabola in both rate

increasing and decreasing regions. The dynamic evolution of

system is shown in Fig.10. The strong stability can be always

guaranteed based on the same reasons in case 3.

Case5: a = 4p2
mC2

w2 or b = 4p2
mC

w2

In this case, the switching line x + ky = 0 is a special phase

trajectory due to λ1,2 = − 1
k . Therefore, the phase trajectory

only appears in the rate increasing region as a = 4p2
mC2

w2 , or

approaches the equilibrium point along the switching line as

b = 4p2
mC

w2 . Naturally, the system is strongly stable.

The analysis in these three cases can be summarized as the

following proposition.

Proposition 4: As b ≥ 4p2
mC

w2 or a = 4p2
mC2

w2 , the BCN

system is strongly stable.

Summing up Proposition 2 to 4, we can draw a stability

criterion for the BCN congestion control system in DCE

networks.

Theorem 1: The sufficient condition for the strongly stable

BCN system is
{

1 +
√

RuGiN
GdC

}
q0 < B
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Fig. 10. Phase trajectory and dynamic behaviors a >
4p2

mC2

w2 and b >
4p2

mC

w2

Proof: Since αd

βd
< 0 and (π+tan−1 αd

βd
−ϕ1

d) > 0, from

(36), we have

max1{x(t)} <
|x1

d(0)|
k
√

bC

Also x1
d(0) = −kA1

i

√
4a−a2k2

2 e−
ak
2 T 1

i and A1
i = 2q0

√
a√

4a−a2k2 ,

thus max1{x(t)} <
√

a
bC q0 In the same way, from (37), we

have

min1 {x(t)} ≥ −|x2
i (0)|

k
√

a

Referring to the variables x2
i (0) and A1

d defined in case

1, and considering y1
d(0) = −x1

d(0)
k , we can easily find

min1 {x(t)} > −q0. In other words, as
{
1 +

√
a

bC

}
q0 < B,

the conditions required by Proposition 2 can be satisfied.

In case 2, λ1,2 = −ka∓√
a2k2−4a
2 < 0. Since λ1 < λ2 <

− 1
k < 0, we have

k+1/λ1
k+1/λ2

< 1, thus
[

k+1/λ1
k+1/λ2

]λ1

< 1. Also

(k + 1/λ1)λ1

(k + 1/λ2)λ2
=

(k + 1/λ1)λ1

(k + 1/λ2)λ1(k + 1/λ2)λ2−λ1

we can get the inequality[
(k + 1/λ1)λ1

(k + 1/λ2)λ2

] 1
λ2−λ1

<
1

k + 1/λ2
=

2a

ka −√
a2k2 − 4a

=
2/k

1 −
√

1 − [ 2
k
√

a
]2

<
√

a

Thus, (38) can be written as

max2{x(t)} <

√
a

bC
q0

which means that the condition required by Proposition 3 can

be satisfied as
{
1 +

√
a

bC

}
q0 < B. Since a = RuGiN and

b = Gd,
{

1 +
√

RuGiN
GdC

}
q0 < B is a sufficient condition that

the BCN system is strongly stable

Remarks: Since the concept of strong stability is introduced,

our stability criterion, which is relative to buffer size B, can

impose constraints on both steady and transient behaviors.

The stability criterion in [4] is irrelative to the parameter B
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because it does not reflect the impact of transient behaviors on

buffer overflow. Theorem1 tells that the maximum of the queue

length max q(t) ∝
√

RuGiN
GdC q0, which increases with

√
N
C

and is irrespective to the other parameters, such as the slope

of the switching line. In other words, the control parameters

w and pm do not affect the stability of system, and merely

impose the impacts on transient performance, such as the

speed of convergence and the existence of limit cycles. Since

max q(t) ∝ q0, a small reference value of queue length is

in favor of strong stability, but prolongs the start-up process

since T0 = C−Nμ
NRuGiq0

. A reasonable trade-off has to be made

in parameter configuration. In addition, Theorem1 also implies

that the classical rule-of-thumb for buffer dimensioning, i.e.

the bandwidth delay product rule, is becoming unsustainable

if packets cannot be dropped due to congestion. Assume that

N = 50, C = 10Gbps, and the propagation delay of the link is

0.5us (i.e. the length is 100m). According to the bandwidth

delay product rule, the buffer size should be 5 Mbits. Let

q0 = 2.5 Mbits, and the other parameters are fixed at the values

recommended by standard draft [5], i.e. Gi = 4, Gd = 1
128 and

Ru = 8 Mbits, the strongly stable BCN queue system requires

the buffer size of 13.75Mbits according to the estimation

of Theorem1, which is nearly three times as large as the

bandwidth delay product. We can simply decrease the control

parameter Gi or increase Gd to shrink the required buffer

size, but it is likely to deteriorate the transient performance.

For example, the convergence becomes sluggish. The proper

parameter settings are prone to optimize the comprehensive

performance, and the stability is only one of the basic metrics.

V. CONCLUSION

Data center networks present some opportunities and chal-

lenges for developing new networking technology. DCE is a

potential candidate for unified network fabrics in data centers.

To avoid dropping packets due to congestion, the congestion

management schemes are introduced into DCE networks. The

BCN mechanism is a basic element of several proposals of

standard drafts. The stability of the BCN mechanism underlies

normal network operations. In this paper, we introduce the

concept of strong stability to fit for the requirements of no

dropped packets in DCE networks, and build a fluid-flow

model for BCN congestion control systems. Considering the

nonlinearity of the variable structure control employed by the

BCN mechanism, we investigate the strong stability of BCN

system using phase plane analysis techniques on a case by case

basis, and synthesize the fragmentary results into a stability

criterion which explicitly presents the constraints complied

with by the control parameters. It can provide straightforward

guidelines for network management in practice. In our future

work, we will follow the same analysis method to investigate

the transient behaviors of BCN system and evaluate the impact

of parameters on the transient performance.
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