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Abstract—The rapidly developing soft real-time data center
applications impose stringent delay requirements on internal data
transfers. Therefore many recently emerged network protocols in
data center share a common goal of decreasing Flow Completion
Time (FCT), in which case the Shortest Remaining Processing
Time (SRPT) scheduling discipline has attracted widespread
attentions. However, SRPT suffers the instability issue, incurring
more and more flows left uncompleted even when traffic load is
within network capacity, which implies unnecessary bandwidth
waste. To solve the problem, this paper proposes a backlog-
aware scheduling algorithm (BASRPT) that stabilizes queue
length while maintaining relatively low FCT based on Lyapunov
optimization. To overcome the huge computational overhead, a
fast and practical approximation algorithm called fast BASRPT
is also developed. Extensive flow-level simulations show that fast
BASRPT indeed stabilizes switch queue and obtains a higher
throughput while being able to push FCT arbitrarily close to the
optimal value in the condition of feasible traffic load.

Index Terms—Backlog-Aware, SRPT, Flow Scheduling, Data
Center Network

I. INTRODUCTION

In today’s data centers, soft real time applications impose

stringent requirements on delay for short flows, in which case

many recently proposed data center transport protocols share

a common goal of minimizing Flow Completion Times (FCT)

[1–5]. Therefore, the Shortest Remaining Processing Time

(SRPT) scheduling algorithm, which has been theoretically

proved to minimize the mean response time (sample path)

[6], has received extensive attentions in data center transport

designs. Assuming flow sizes are known a priori, PDQ [2],

pFabric [3], and PASE [4] all adopt the idea of SRPT to

effectively reduce the average FCT.

SRPT is a preemptive size-based flow scheduling algorithm,

similar to the Shortest Job First (SJF) in the job scheduling

issue of computing systems. The main idea is to always select

the flow with the least remaining time until completion to run.

Not only proved in theory, the delay performance of SRPT has

also been evaluated with experiments in [7].

However, literatures have demonstrated SRPT reduces the

stability region in linear networks [8–10]. In data center

fabrics, the stability of the SRPT scheduling algorithm has

only received limited attentions so far. Experiments in [11]

discover the instability phenomenon, whereas no solution is

provided. Here, stability is in the stochastic sense, meaning

the recurrence of queue evolution process, and instability thus

implies there could be more and more uncompleted flows left

in queues. If this phenomenon occurs when traffic loads are

less than network capacity, the bandwidth would be directly

wasted, and the overall throughput will then be harmed.

Therefore, stability is a crucial property in flow scheduling

issues, and should be carefully studied.

We demonstrate the instability property of SRPT using a

simple example that could really appear in data center flow

patterns. And a subsequent simulation confirms the instability

phenomenon in the data center fabric.

In order to understand the flow scheduling in data centers,

we start by abstracting the whole data center fabric into a non-

blocking input queued switch, as many state-of-art data center

transport protocols did [3, 12–15]. By this abstraction, we get

the expression to describe the queue length evolution process.

Depending on the above insights, we develop BASRPT,

a backlog-aware flow scheduling algorithm that takes both

queue lengths and remaining flow sizes into account. Each

time making a scheduling decision, BASRPT scheduler tra-

verses all possible scheduling schemes and chooses the one

with the smallest V × average size of selected flows −
total length of selected queues, where V ≥ 0 is an

importance weight on FCT minimization against queue length

stabilization. The basic idea of BASRPT follows Lyapunov

optimization theory, by means of which BASRPT inherits

the delay performance of SRPT and meanwhile stabilizes the

switch queue.

However, BASRPT needs to traverse all possible scheduling

schemes on each update, and each scheme contains massive

computing, resulting in huge total computational overheads.

Besides, the lack of explicit priorities among flows makes no

way for any distributed implementation for BASRPT. Since

scheduling decision updates on every arrival and completion

whose occurring is rather frequent, the huge overhead makes

BASRPT impractical to normally work in real systems. Thus

we propose fast BASRPT, the heuristic approximation of BAS-

RPT, which only involves the acceptable computational over-

heads. In data center fabrics, fast BASRPT selects flows one by

one. When constructing a scheduling decision, each time the

scheduler chooses the flow with the smallest V
N
×flow size−

queue length, where N represents the total number of servers.

Adding up the values of N chosen flows exactly produces

V × average flows size − total selected queue length.

In this way, fast BASRPT approximately achieves the opti-

mization goal of BASRPT. Since fast BASRPT assigns global
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priorities to all flows, it can be simply implemented using

distributed paradigms [3].

We evaluate our algorithm using simulations on the traffic

pattern obtained from existing measurements [1, 16]. We also

discuss the influence of parameter V on the fast BASRPT per-

formance. Simulation results reveal that fast BASRPT indeed

stabilizes queue lengths at high loads while keeping the FCTs

within the range of not affecting the application performance.

When the traffic load is relatively low, BASRPT achieves

almost identical delay performance as SRPT. Besides, the

throughput is also improved in fast BASRPT. The parameter

V properly makes a tradeoff between delay and stability,

following Lyapunov Optimization Theorem [17].

In summary, the contributions of this work are as follows:

• Introducing the stability analysis as well as Lyapunov

optimization to flow scheduling issues in data center

networks;

• Designing a backlog-aware flow scheduling algorithm

based on Lyapunov optimization, and proving its stability

and deducing delay bound;

• Developing a practical and fast heuristic algorithm to

approximates the exact algorithm;

• A systematic evaluation of the proposed algorithm over

realistic traffic patterns and a wide range of key parameter

The rest of the paper is organized as follows. In Section

II we introduce the SRPT scheduling algorithm as well as

the related work on its stability property. We also illustrate its

instability problem in the data center fabric using a simple ex-

ample. In Section III, we establish the model for queue length

evolution process. Based on Lyapunov Optimization Theorem,

a backlog-aware flow scheduling algorithm (BASRPT) and

its stability proof are proposed in Section IV. Besides, we

develop a practical and fast version of BASRPT. We evaluate

the proposed algorithm in Section V . In the end, Section VI

concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we mainly introduce the SRPT scheduling

algorithm employed by transport protocols in data centers as

well as its stability investigations up to date. Further, through

a simple example, we illustrate the instability of SRPT in

the context of flow scheduling issue, which serves as the

motivation of this work.

A. Background

In recent years, soft real-time data center applications have

gained rapid development, such as web search, retail, adver-

tisement, social networking, and recommendation systems [1].

A soft real-time application aggregates responses from many

back-end servers to produce results. The tardy back-end flows

will either inflate the application response time or be directly

left out, so as to lower the quality of final results [2]. Since

a small network delay will largely affect the user experience,

these applications impose demanding delay requirements on

the internal data transfers in data center networks.

Motivated by delay requirements, many recently proposed

data center transport protocols share a common goal of min-

imizing FCT. In this case, the SRPT scheduling algorithm is

widely used, since it has been theoretically proved to minimize

the average FCT over a single link [6]. For example, PDQ [2],

pFabric [3], and PASE [4] all adopt the basic idea of SRPT.

SRPT is a preemptive version of SJF, a size-based schedul-

ing algorithm, in which the size of all existing processes

(e.g., flows) must be known a priori. In the community of

data center network protocol designs, many existing solutions

assume accurate flow information, including known flow sizes

[2–5, 12], in which case SRPT really applies. When scheduling

over one single link, SRPT always selects the flow with the

smallest remaining time until completion. It is the preference

to flow with small size that minimizes the waiting time of

arrived flows, namely, minimizing the average FCT. However,

when simultaneously scheduling multiple links, the problem

of minimizing average FCT is equivalent to the NP-hard

sum-multicoloring problem even under non-blocking fabric

assumption [18]. As a consequence, some recent data center

transports adopt a simple approximate greedy algorithm, which

schedules flows in a non-decreasing order of the remaining

flow size until all left flows are blocked by currently selected

ones [2–4]. From the algorithm itself, we can see that it is also

SRPT. Fortunately, the approximate algorithm is theoretically

guaranteed to provide near-ideal performance [18].

However, at the same time of the guaranteed delay perfor-

mance, the stability properties of SRPT have been questioned

more than once [8, 10, 11]. The stability here represents

recurrence of the queue evolution process, meaning that any

queue state seen before will always appear again. That is, there

cannot be conditions in which a queue keeps growing and

never comes back. With an unstable scheduling algorithm,

there could be more and more uncompleted flows left even

when the traffic load is in link capacity. In this context,

the scheduling algorithm fails to use the available bandwidth

efficiently and thus not yield optimal throughput performance.

There have been existing works demonstrating SRPT’s

instability in multi-link systems. The literature [8] establishes

the exact stability conditions for SRPT in linear networks,

and indicates SRPT may cause instability even at arbitrarily

low traffic loads. The scenarios where SRPT reduces the

stability region are illustrated in [10] using 2 independent

M/D/1 queues. Furthermore, the authors prove that using

SRPT locally within each traffic class is sure to improve the

delay performance while maintaining the stability of networks.

However, the stability problem of SRPT in data center

fabrics has not received enough attentions so far, and the few

solutions on locally adopting SRPT eliminates the potential

benefits of global SRPT scheduling. This provides the design

space for a stable but delay-outstanding scheduling algorithm.

B. Motivation

The poor stability properties of SRPT in linear networks has

been fully studied. Drawing upon its insights, we illustrate the

instability that could happen in data center networks through
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(a) Flow interaction and arrival times
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Fig. 1: An example of SRPT instability

a simple example: Consider a simple case of the scheduling

over 3 flows sharing 2 bottleneck links (constraints at sender

and receiver side in data center fabrics), as shown in Figure

1(a). Flow f1, f2 share the same source and Flow f1, f3 share

a common destination, but f2 does not interfere with f3. By

the bandwidth constraint of the access link, during each slot a

server can only send or receive 1 packet. At the beginning of

slot 1 (i.e. time 0), both f1 consisting of 5 packets and f2 with

1 packet arrives. Then at the beginning of slot 2 (i.e. time 1),

another 1-packet f3 is ready. Given a scheduling algorithm,

then the queue evolution process is available.

Figure 1(b) depicts the corresponding flow operations under

SRPT scheduling. During the first slot, f2 leaves, since it is

shorter than f1. After f3 comes, slot 2 will then be occupied

by the one-packet f3. In this way, after 6 slots goes by, f1
only transfers 4 packets and 1 packet remains.

We can see that in SRPT, why 1 packet left lies in the

two 1-packet flows not overlapping in time domain. They

preempt 2 slots from f1 one after another and hence f1 do

not complete its transfer. Note that during the whole 6 slots,

totally 6 packets arrive at one bottleneck and 6 packets arrive

at the other. In other words, the traffic load does not exceed

link capacity, and it is the SRPT scheduling algorithm that is

responsible for the left packet. In real data centers, the number

of competing flows is far more than 3, therefore the non-

overlapped packets of small flows could preempt more slots.

As a result, the remaining part of a large flow is likely to be

too long to compete with those small ones. In this context,

the remaining packets could not leave the queue until the next

larger competing flow comes. However, the newcoming large

flow will suffer severer preemption because the grabbers not

only include small flows, but also the remaining part of the left

one. As time goes by, the total backlog at source will become

larger and larger, leading to instability. The consequence is
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Fig. 2: Queue length at a port

that more and more flows become uncompleted even when

the link capacity is enough to support the traffic load, which

indicates the inefficiency of resource utilization. Moreover, the

application performance will also be affected.

Actually, if the scheduling algorithm is backlog-aware,

namely, considers not only the flow size but also the queue

length, this problem can be totally avoided. A backlog-aware

algorithm will give a large flow some slots if the backlog of

the same source and destination has grown to a certain degree,

which prevents more and more packets of large flows from

being left. Figure 1(c) shows the result of a backlog-aware

scheduling strategy. Although f1 is larger than other flows,

considering its backlog is also large, and to keep the balance

of queue, the scheduler assigns the first slot to f1. After that,

the backlog only contains 4 packets and the priority of f1
decreases, thus the subsequent slot are assigned to the two

1-packet flows. Since there is no mutual interference between

f2 and f3, the 2 short flows complete transmission in 1 slot

and the remaining 4 slots are all left to f1. In this way, all

flows complete transfer within 6 slots at the cost of 1 slot of

delay increase on f3. If this increase is acceptable, the backlog-

aware strategy improves the throughput by 1
6 pkt/slot, relative

to SRPT. This is only a simple illustration, in practice the

relative weight between flow size and queue length should be

carefully assigned to achieve a suitable tradeoff. However, the

simple idea of backlog-aware scheduling motivates this work.

The recent study of data center traffic explores the traffic

pattern supporting data mining tasks in data centers [16]. In

short, jobs relying on large chunk exchanges will travel locally,

while the small queries and their responses travel across

the whole cluster. The two patterns correspond to the above

scenario where small and large flows coexist and the large ones

have concentrated spatial distribution, hence the instability

phenomenon could indeed happen in realistic applications.

Figure 2 shows the queue length variation of a simulation

running SRPT and a backlog-aware strategy in the data center

fabric (fat-tree topology) using the traffic pattern mentioned

above. The results confirm our prediction. In the simulation,

each ingress/egress link holds about 9.20 Gbps of traffic load,

of which the largest one does not exceed 9.5 Gbps. Compared
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with SRPT, the backlog-aware strategy just priorities flows

in the backlog exceeding a certain threshold and other flows

are still scheduled according to SRPT. Both algorithms are

centralized, and the queue length depicted is from one of the

servers. It is not hard to see that although the traffic loads at

all ingress/egress links are within 10 Gbps of link capacity,

the queue length under SRPT still keeps increasing, while in

the backlog-aware strategy stabilizes at a certain value.

Our motivation in this work is mainly to propose a backlog-

aware flow scheduling algorithm that maintains relatively low

FCT while stabilizing queue length. We start by abstracting

out the data center fabric into an input queued switch. Then

we use the Lyapunov optimization theory [17] to design an

algorithm that not only achieves good delay performance but

also keeps queue stable as long as the traffic load is within

network capacity. By doing this, we introduce the stability

analysis into flow scheduling issues in data center networks.

III. NETWORK MODEL

In this section, we develop a formalized model of queue

length evolution with flow scheduling in the data center fabric,

which provides a framework to serve as the foundation for

further improvements. Note that the abstraction is used to

simplify our analysis, but is not enforced in our simulations

(Section V).

A. Data Center Fabric Abstraction and SRPT operation

Just like in quite a few data center transport designs [3, 12–

15], the entire data center fabric in our analysis is abstracted

out as one non-blocking input queued switch interconnecting

all servers, as shown in Figure 1. It is known that in a data

center fabric, any two servers could intercommunicate, and the

big switch abstraction firstly guarantees this fact. Furthermore,

advances in full bisection bandwidth topologies [19, 20] and

techniques for implementing edge constraints into the network

[13, 21] push the bottleneck to source and receiver side, which

makes the abstraction reasonable. In the big switch, each port

represents one server. Each ingress port has one or more

flows destined to various egress ports, so it is convenient to

organize the flows in Virtual Output Queues at ingress ports, as

illustrated in Figure 1. In a data center network connecting N

servers, there should be N2 virtual queues – N at each ingress

port – with each queue i, j containing flows arriving at ingress

port i and destined for egress port j, where i, j ∈ {1, · · · , N}.
Like in many previous transport designs [2–5, 12], we

assume that the prior knowledge of flow sizes is available,

thus could be used for scheduling. In the SRPT scheduling al-

gorithm, the scheduler identifies all active flows. The globally

shortest flow is first included, and if it lies in queue i, j, then

all other flows with ingress port i or egress port j are blocked

and thus removed from the candidate set. Repeat the action

for the rest of flows until no flow could be added, then all the

selected flows compose a current scheduling decision.

B. System Operations

Assume the system operate in slotted time, the evolution

process could be expressed using a discrete time stochastic

1,1
1,2
1,3

2,1
2,2
2,3

3,1
3,2
3,3

Ingress Ports
(Server Uplinks)

Egress Ports
(Server Downlinks)

1

2

3

1

2

3

Fig. 3: Abstraction of data center fabric

process. As long as the granularity of time slots is appropri-

ately selected, the accuracy of analysis would not be seriously

violated by discretization. Because what we care about are

long-time-scale properties, it is not necessary to elaborately

describe the system behavior at every time point. Supposing

that packets are of the same length, and let the transmission

delay of a packet at its ingress port be a time slot. Obviously,

the granularity of a time slot is at least several times smaller

than FCT, guaranteeing the accuracy of discretization. Then

due to crossbar constraints, during one time slot at most one

packet can be transferred from each ingress port and at most

one packet can be received by each egress port. We assume

that flows randomly arrive at the ingress ports only at the end

of each slot.

In an input-queued switch model with N ingress/egress

ports, qij (i, j ∈ {1, · · · , N}) denotes the jth virtual queue

at the ith ingress port. As stated above, it contains the flows

arriving at ingress port i and destined for egress port j. When

designing a size-based flow scheduling algorithm, to ensure

the known flow sizes before scheduling we assume packets of

one flow (however long) arrive all at once, or else the scheduler

cannot know about all flow sizes on each time slot. We denote

a flow by Aij(t), meaning the number of packets arriving at qij
at the end of slot t. If no flow arrives, then Aij(t) = 0. Since

each time slot is really small relative to FCT, we could ignore

the situation where more than one flows arrive at the same qij
at the same slot. Due to the randomness of flow sizes, every

Aij(t) should be a random positive integer that obeys a certain

probability distribution. Suppose that Aij(t) for different i, j

are mutually independent, and for each (i, j), Aij(t) are

independent identically distributed for different t, with mean

λij . Let the input rate matrix Λ = (λij). For the subsequent

proof, we also assume an upper bound B for its secondary

moment, that is, E[A2
ij(t)] ≤ B for all i, j ∈ {1, · · · , N} and

all t ∈ Z+. The assumption is reasonable because according

to the measurement in [1], all flow lengths are within an upper

bound of 50MB.

Each scheduling decision is a matching between ingress

and egress ports, thus could be expressed with a permutation

σ = (σ1, · · · , σN ), where σ1, · · · , σN are distinct elements of

{1, · · · , N}. Let Π denote the set of all N ! permutations. In
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this setting, the scheduling decisions Rij(t) = I{σi=j}, which

can only take values 0 or 1. Rij(t) = 1 means ingress port i is

connected to egress port j, that is, a flow in qij is to transmit

a packet, if there is any such flow. Otherwise, Rij(t) = 0. A

system state X has the form X = (Xij : i, j ∈ {1, · · · , N}),
where Xij refers to the length of qij . Under the assumption

of unlimited queue lengths, the state space S is infinite.
The evolution of a queue over the time slot [t, t + 1) can

be described as follows

Xij(t+ 1) = Xij(t) +Aij(t)−Rij(t) + Lij(t) (1)

where Lij(t) = (−(Xij(t)−Rij(t)))+, serves as a rectifica-
tion that takes value 1 if and only if the scheduling imposes a
potential departure at qij during slot t when Xij(t) = 0. In the
long run, the mean number of packets arriving at ingress port
i during one slot is given by the sum

∑
j∈{1,··· ,N} λij , and

similarly the
∑

i∈{1,··· ,N} λij is the mean number of arriving

packets destined for egress port j. The crossbar constraints
impose the following necessary conditions for stability.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈{1,··· ,N}

λij ≤ 1 for all i

∑
i∈{1,··· ,N}

λij ≤ 1 for all j
(2)

The implication is oblivious that the queue backlog at a port

will absolutely keep increasing in the long term if its mean

arriving rate exceeds the link capacity, which indicates the

instability.

Since the scheduling decisions are only based on current

flow lengths, the next system state is irrelevant to historical

information. Therefore, the evolution can be exactly described

by an irreducible Discrete Time Markov Chain (DTMC) and

the theorems for DTMC recurrence could be directly used for

stability analysis [22].

Let P denote the DTMC describing the queue length

evolution. Following the formal definition in [22], the stability

means the recurrence of P , and the formal definition is that

for every state α in S, Eα[ηα] = ∞, where Eα[ηα] is the

expectation of the number of visits to state α when starting

from α itself. That is to say, once departing from a recurrent

state, the DTMC will revisit it with probability 1. A DTMC

is called recurrent if its every possible state is recurrent.

IV. BACKLOG-AWARE SRPT

Based on the model given in previous section, in this sec-

tion, we develop an improved algorithm called Backlog-Aware

SRPT (BASRPT) for flow scheduling in data center fabrics.

BASRPT is a backlog-aware version of SRPT whose design

is based on the Lyapunov optimization theory. Compared with

naive SRPT scheduling algorithm, BASRPT takes into account

all queue lengths when making each scheduling decision.

In this way, BASRPT guarantees queue stability while still

maintaining the low delays properties as SRPT as long as the

condition (2) is satisfied.

A. BASRPT Overview

In the context of input-queued switch, BASRPT tries to
solve the following optimization problem when making each
scheduling decision

Minimize : V ȳ(t)−
∑

ij
Xij(t)Rij(t)

Subjectto : Rij(t)Rik(t) = 0 i, j, k ∈ {1, · · · , N}, k �= j
Rij(t)Rkj(t) = 0 i, j, k ∈ {1, · · · , N}, k �= i

No flows could be added any more

V ≥ 0 is an importance weight on how much we emphasize

average FCT minimization, similar to the tradeoff parameters

in [23]. ȳ(t) is the mean length of all flows selected by the

current scheme and
∑

ij Xij(t)Rij(t) is the sum of selected

queue lengths. Rij(t) is an indicator whether any flows in qij
is scheduled on slot t, then the first two conditions explain the

crossbar constraint that each ingress/egress port can appear

at most once in a scheduling decision. The last constraint

means the flow selection should be in a maximal manner. The

scheduling decision is updated when a flow comes or a transfer

completes.

To achieve the optimization objective, BASRPT each time

iterates through all possible scheduling schemes and chooses

the one with the least V ȳ(t) −
∑

ij Xij(t)Rij(t). Intuitively,

the weighted sum expresses the expect of choosing small flows

in long queues, which corresponds to the goal of reducing

FCT while stabilizing queue. Different from SRPT, BASRPT

comprehensively considers flow size and queue length at exe-

cution. If we set V to be arbitrarily large, then the expectation

E[ȳ(t)] is to be pushed arbitrarily close to the optimal value,

and BASRPT would degenerate to SRPT.

It is apparent that to stabilize a queue in the long run, the

average input rate must be no more than the average output

rate, or else the backlog will keep accumulating. Because

of the existing possibility for scheduling empty queues, the

actual output rate should be less than or equal to the average

scheduling rate R̄ij , then a stable scheduling algorithm must

firstly make sure that λij ≤ R̄ij for all i, j ∈ {1, · · · , N}.
Consider first an algorithm satisfying the above rate re-

quirement. For the input rate matrix Λ, a line sum is either

a row sum
∑

j λij or a column sum
∑

i λij . Under the

necessary condition for stability, any
∑

j λij should be less

than or equal to 1 pkt/slot, and the same restriction applies

to any
∑

i λij . Thus by appropriately increasing some of the

entries of Λ we could get a doubly stochastic matrix M ,

and λij ≤ Mij for all i, j. A doubly stochastic matrix is a

square matrix whose entries are nonnegative and all its line

sums are equal to 1. In terms of Birkhoff’s theorem [24],

M can be expressed as a convex combination of permutation

matrices, that is, M =
∑

σ∈Π M(σ)u(σ). M(σ) represents

the N×N permutation matrix whose entries totally depend on

the permutation σ. If σi = j, then Mij = 1, or else Mij = 0.

u(σ) is the appearance probability of the permutation σ and∑
σ∈Π u(σ) = 1.

Summarizing the above statements, there is a probability

distribution u on Π so that for all i, j ∈ {1, · · · , N}, λij ≤∑
σ∈Π M(σ)u(σ). This fact means, as long as the scheduling
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decision obeys the probability distribution u, the requirement

λij ≤ R̄ij(t) would be satisfied, and define ε as follows:

ε = max{ε′ : λij + ε′ ≤ R̄ij} for all i, j

There could be various methods to realise the above distri-

bution. For example, the scheduler can choose the permuta-

tion from Π according to distribution u when making each

scheduling decision, or give each σ a time period and let

the proportion the period accounts for to be u(σ). From all

scheduling algorithms satisfying this probability distribution,

there should be an optimal one in the sense of minimizing the

time average of ȳ(t), here we define it as α∗.

However, only meeting the above condition is not enough

to ensure stability, hence BASRPT further draws upon the

Lyapunov optimization method to guarantee the positive re-

currence as well as the bounded delay. The detailed proof is

in subsection IV-B.

B. Analysis of BASRPT

In fact, BASRPT is a normal example of drift-plus-penalty

method in Lyapunov optimization. To prove either stability

or delay performance of BASRPT, we need to firstly define

the Lyapunov function, which directly determines algorithm

performance.
Unfortunately, the selection of Lyapunov functions has no

fixed methods so far, and existing works often do it empirical-
ly. Since the subsequent analysis needs the Lyapunov function
to be a non-negative function of system states, here we define
a quadratic Lyapunov function L(X(t)) as follows:

L(X(t)) �
1

2

∑
i,j

X
2

ij(t) (3)

Obviously, the definition of quadratic sum of all queue lengths

ensures non-negativity, and represents a scalar measure of

queue congestion in networks. In addition, L(X(t)) = 0
occurs if and only if all queues are empty at slot t. So it

is intuitively clear that an algorithm concentrating on pushing

L(X(t)) towards zero will help to stabilize queue and avoid

congestion.
After defining the Lyapunov function, we could then use

it to get another important variable, that is the Lyapunov
drift Δ(X(t)). Literally, the Lyapunov drift is the difference
between the Lyapunov function values of two subsequent slots,
and the strict definition is as follows:

Δ(X(t)) � E[L(X(t+ 1))|X(t)]− L(X(t)) (4)

where E[L(X(t + 1))|X(t)] denotes the conditional expec-

tation of the Lyapunov function at slot (t + 1) under the

present state X(t). The definition is from the perspective

of slot t. Because of the randomness of flow arrivals, we

cannot know the system state on slot (t+1) deterministically,

which explains the conditional expectation taken in the above

definition.

Another variable remaining to be defined in the optimization

problem in Section IV-A is ȳ(t), which is the metric whose

time average we want to optimize besides stability. In the

drift plus penalty method [17], ȳ(t) is called “penalty”, and

“optimize” must be “minimize”, hence those metrics waiting

to be maximized must experience the transformation, such as

taking reciprocals or opposite numbers. In our context, there is

no doubt that what we want to minimize is the average FCT.

However, the FCT cannot be measured before the flow transfer

completes, that is to say, we cannot get this metric when

making scheduling decisions. In SRPT, the goal of minimizing

FCT is simply realized by choosing as short flows as possible.

Similarly, in our design, the metric of FCT could also be

transformed into the average of selected flow lengths. The

average value rather than the sum is to avoid the preference for

scheduling with less flows which lowers the link utilization. In

this case, the “penalty” ȳ(t) is defined as the average length

of selected flows, that is

ȳ(t) �

∑
f∈s(t) yf (t)

|s(t)|

where yf (t) denotes the remaining size of flow f and s(t) is

the set of selected flows on slot t.

Theorem 1. BASRPT is stable, and the difference between

the time average expected ȳ of BASRPT and that of the delay-

optimal algorithm α∗ is bounded by
N(1+NB)

2V .

Proof. Substituting (1) and (3) into the expression of
Δ(X(t)), we could get

Δ(X(t)) =
1

2

∑
i,j

E[(Xij(t) +Aij(t)−Rij(t) + Lij(t))
2|X(t)]

−
1

2

∑
i,j

X
2

ij(t) ≤
∑
i,j

Xij(t)E[Aij(t)−Rij(t)|X(t)]

+
1

2

∑
ij

E[A2

ij(t) +R
2

ij(t)|X(t)]

where the final inequality is in terms of the fact that for any
Xij(t) ≥ 0, Rij(t) ≥ 0 and Aij(t) ≥ 0,

(Xij(t) +Aij(t)−Rij(t) + Lij(t))
2 ≤ (Xij(t) +Aij(t)−Rij(t))

2

= X
2

ij(t) + (Aij(t)−Rij(t))
2 + 2Xij(t)(Aij(t)−Rij(t))

≤ X
2

ij(t) +A
2

ij(t) +R
2

ij(t) + 2Xij(t)(Aij(t)−Rij(t))

The first inequality is because the variable Lij(t) can only

push Xij(t) + Aij(t) − Rij(t) closer to zero, and the final

inequality is due to the remove of the non-positive item

−2Aij(t)Rij(t).
As the arrivals Aij(t) are i.i.d. over time slots, they should

be independent of the current queue backlogs X(t), that is

E[Aij(t)|X(t)] = E[Aij(t)] = λij . Hence we have

Δ(X(t)) ≤
1

2

∑
ij

E[A2

ij(t) +R
2

ij(t)|X(t)]

+
∑
i,j

Xij(t)λij −
∑
i,j

Xij(t)E[Rij(t)|X(t)]
(5)

Since E(A2
ij(t)) ≤ B for all i, j ∈ 1, · · · , N and all t ∈

Z+ (seen in subsection III B), we can also give an upper
bound of the first term on the right-hand-side of the above
drift inequality. As stated in the above section, due to the
crossbar constraint, there could be at most N Rij(t) equal to
1 in a scheduling decision, and others must be 0, therefore
1
2

∑
i,j E[R

2
ij(t)|X(t)] ≤ N

2 , thus for all t, all possible X(t)
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and all possible scheduling decisions that can be taken, we
have:

1

2

∑
i,j

E[A2

ij(t) +R
2

ij(t)|X(t)] ≤
N

2
(1 +NB)

Let B′ = N
2 (1+NB) and substitute it into (5), we could get

Δ(X(t)) ≤ B
′ +

∑
i,j

Xij(t)λij −
∑
i,j

XijE[Rij(t)|X(t)] (6)

Adding the item V E[ȳ(t)|X(t)] on both sides of (6) yields

Δ(X(t)) + V E[ȳ(t)|X(t)] ≤B′ −
∑
ij

E[Xij(t)Rij(t)|X(t)]

+V E[ȳ(t)|X(t)] +
∑
ij

Xij(t)λij

B′ is a constant, and the second item on the right-hand side∑
i,j Xij(t)λij is also a fixed value under given X(t). Thus

by the concept of opportunistically maximizing an expectation

[17], the action of minimizing V ȳ(t) −
∑

ij Xij(t)Rij(t)
actually minimizes the whole right-hand side, a bound on the

drift-plus-penalty.
In this way, if we replace BASRPT with any other schedul-

ing algorithm, including α∗, the bound will certainly increase,
or at least stay unchanged. That is,

Δ(X(t)) + V E[ȳ(t)|X(t)] ≤B′ −
∑
ij

Xij(t)E[R
∗
ij(t)|X(t)]

+V E[ȳ∗(t)|X(t)] +
∑
ij

Xij(t)λij

where Δ(X(t)) + V E[ȳ(t)|X(t)] is the drift-plus-penalty of
BASRPT and ȳ∗(t), R∗

ij(t) are both the result of α∗ on slot

t. We suppose the expected penalty E[y(t)] is lower bounded
by a finite value ymin and that E[L(X(0)) < ∞] which are
easy to satisfy in reality. Note that α∗ does not take into
account the queue backlogs when scheduling flows, we have
E[ȳ∗(t)|X(t)] = E[ȳ∗(t)]. With the definition of ε, from above
inequality we can obtain

Δ(X(t)) + V E[ȳ(t)|X(t)] ≤ B
′ + V E[ȳ∗(t)]− ε

∑
ij

Xij(t) (7)

According to the Lyapunov Optimization Theorem [17], since
there are constants B′ ≥ 0, V ≥ 0, ε ≥ 0 and E[ȳ∗(t)]
making the inequality (7) true for all slots {0, 1, 2, · · · } and all
possible X(t) , we readily have: If ε > 0 then the evolution
process is positive recurrent, and if V > 0, the time average of
both expected penalty E[ȳ(t)] and queue lengths

∑
ij E[Xij ]

satisfy:

lim
t→∞

1

t

t−1∑
τ=0

E[ȳ(τ)] ≤ E[ȳ∗(t)] +
B′

V

lim
t→∞

1

t

t−1∑
τ=0

∑
ij

E[|Xij(τ)|] ≤
B′ + V (E[ȳ∗(t)]− ymin)

ε

Discussion: The above conclusion indicates, the queue

lengths in the system is stable and that the average expected

queue backlog are upper bounded as O(V ). Furthermore, the

difference between the delay performance of BASRPT and the

delay-optimal algorithm is also bounded by B′

V
. In this case,

we choose the V value by the requirements to performance

and steady queue length. However, the necessary condition

for stability also includes the case of λij = 1, in other words,

ε = 0, which the theorem does not cover. But by careful

investigation, we can find any scheduling algorithm cannot

ensure the recurrence if the special case really occurs. In this

special case, there must exist an ingress/egress port whose

input rate is 1 pkt/slot, even if a scheduler could allow one

packet to leave on every slot, there could be wasted slots

when the whole ingress/egress port is empty. If the traffic

contains serious burstiness, the total queue length on this port

is likely to stay around a large value, directly violating the

recurrence. However, from another point of view, the real data

center networks usually do not work at full bandwidth, thus

the special case rarely occurs.

C. Practical and Fast BASRPT Implementation

While BASRPT theoretically guarantees both the delay

performance and stability, it has a tough problem with im-

plementation. Because BASRPT does not assign priorities to

flows, no distributed designs could be used for implementation.

Thus when making each scheduling decision, the BASRPT

scheduler must traverse all possible maximal sets of the current

non-empty queues. The number of such sets could add up

to N ! if all queues are not empty. In today’s data centers,

N could be really large. The large N implies the substantial

possible maximal sets that the scheduler needs to traverse. And

in each possible scheduling BASRPT needs to compute the

weighted sum V ȳ(t)−
∑

ij Xij(t)Rij(t). To achieve this, the

scheduler counts the number of selected flows and calculates

the sum of their sizes as well as the total length of the queues

where they are located, which also involves unneglectable

computational overhead. Many applications involve numerous

small flows (e.g. queries), hence the events of flow arrivals and

completions could occur so frequently that incurs also frequent

scheduling updates. In this context, the huge computational

overhead makes BASRPT impractical.

To reduce the implementation complexity, we develop fast

BASRPT algorithm, a heuristic approach to approximate BAS-

RPT and ensure the acceptable computation overhead. Similar

to the SRPT implementation in the data center fabric, fast

BASRPT also selects flows one by one, and the only difference

lies in the selection rules. SRPT scheduler chooses the shortest

flow from current available ones each time, while the fast

BASRPT scheduler chooses the flow with the smallest weight-

ed sum V
N
×y(t)−Xij(t). Here, y(t) is the flow size and Xij(t)

represents length of the queue where the flow resides. Note that

the weight coefficient is V
N

, the weight in BASRPT divided

by the number of servers N . On account of the crossbar

constraint, a scheduling could contain at most N flows and

here we use N to approximate the number of selected flows

n(t) in each scheduling. Because we do not know how many

flows are included in a scheduling decision before we really

construct it, we need to make an estimation during the flow

selection. In this way, adding up the weighted sums of all

flows in a scheduling yields V
N

∑
f∈S y(t)−

∑
ij Xij(t)Rij(t),

645



where S is the set of flows involved in the current scheduling.

Since N is used to approximate n(t), the obtained sum

could be considered as V ȳ(t) −
∑

ij Xij(t)Rij(t), which is

identical to BASRPT’s optimization goal. The pseudo code

is provided in Algorithm 1. Each time making a decision, at

most N2 flows are sorted, hence the running time should be

O(N2 × log(N2)) = O(N3).

Algorithm 1 Fast BASRPT algorithm

Input: F = Set of active flows with their located queue,

ingress port, egress port, and remaining size

Output: D = Set of selected flows

1: D ← ∅
2: ingressBusy[1, · · · , N ]← FALSE

3: egressBusy[1, · · · , N ]← FALSE

4: for each f ∈ F , in non-decreasing order of V
N
×

remaining size− located queue length do

5: if ingressBusy[f.ingress] == FALSE and

egressBusy[f.egress] == FASLE then

6: D.ADD(f )

7: ingressBusy[f.ingress]← TRUE

8: egressBusy[f.egress]← TRUE

9: end if

10: end for

11: return D

V. EVALUATION

In this section, we conduct flow-level simulations to evaluate

the performance of our algorithm. The traffic distribution used

in the simulation is constructed depending on experimental

observations in [1]. We first evaluate both FCT and queue sta-

bility, taking SRPT as reference. Then we discuss the influence

of different values of V on fast BASRPT performance. The

simulation parameters mainly refer to those in [3].

A. Simulation Methodology

Platform and Topology: We develop our own flow-level

simulator in Java. For the topology, we use the multi-rooted

hierarchical tree topology shown in Figure 4, which is a

common case for data center topology [19, 25]. The fabric

contains 3 layers and interconnects 144 hosts through 12

top of rack (ToR) switches and 3 core switches, and all of

them compose a full connection. The 144 hosts are evenly

distributed over 12 racks, therefore each rack holds 12 hosts.

Each host is connected to a ToR switch by a 10Gbps link,

while each ToR switch simultaneously connects to all 3 core

switches with 40Gbps links. Such bandwidth configuration

guarantees the bottleneck not to be in network.

Workloads: The workload is generated following the sta-

tistical results given in recent data center traffic measurements.

Literature [1] provides the distribution of both flow inter-

arrival times and flow sizes. The workloads have obvious

heavy-tailed characteristics, and over 95% of all bytes are

from the 30% of flows with the size of 1-20 MB [3]. The

measurement conducted on the spatial distribution of traffic

����

12 Racks

�� �� �� ��

12 Hosts 12 Hosts 12 Hosts 12 Hosts

10Gbps 
Links

40Gbps 
Links

Core

ToR

Fig. 4: Simulation topology

discovers two flow patterns in the data centers [16]. In brief,

large transfers (e.g. backups, backend operations) usually

travel within a rack, while small flows (queries and responses)

across the whole fabric.

In simulations, each server concurrently holds small and

large flows. Since queries and responses are of fixed size in

practice, we set them to be 20KB. These small flows follow

Poisson arrival process, and for each source the destinations

are uniformly chosen from all 144 hosts at random. As for

background flows, the inter-arrival times and flow sizes both

follow the distributions in [1]. Considering the spatial locality,

the destination of each background flow uniformly falls in the

same rack with its source. Finally, for whatever kind of flows,

the arrival rates vary to achieve a desired level of load in fabric.

In order to study the stability property, we focus on the

traffic nearly saturating network but carefully control the

volume between each server pair so that the workload on

each port does not exceed link capacity. In this way, we can

observe the performance of fast BASRPT under the stressed

network conditions. For our 10Gbps of port link bandwidth,

we generate around 9.5Gbps of loads on each ingress/egress

port. However, to evaluate delay performance we also involve

simulations under loads from 1Gbps to 8Gbps.

Performance Metrics: To study the delay performance and

stability properties, we consider 3 main metrics:

• FCT. We separately compute that value for small and

large flows. Furthermore, for queries and responses, we

calculate the 99th percentile FCT, since it is often those

tardy flows that affect the application performance most.

• Throughput. Throughput here is calculated globally in

bytes, counting the total data volume leaving the fabric

during the whole simulation period. At the end of a

simulation, those packets not leaving are left in the fabric.

Throughput directly reflects the link utilization, the metric

that BASRPT optimizes besides FCT.

• Queue length variation trend. Considering that the

stability is a metric on infinite time scales, we observe

the evolution trends of queue lengths over a period of

500s, which is long enough to judge whether a queue

is stable or not. Because the long period filters out the

impact of short-term arrivals, if the queue length keeps

growing in macroscale during the total 500s, we think of

it as unstable.
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TABLE I: Average FCT and 99th percentile FCT (ms)

query: Avg query: 99th back: Avg back: 99th

fast BA 2.49 14.18 25.04 406.49

SRPT 1.34 4.03 26.76 403.58
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Fig. 5: Throughput and queue length

B. Performance Measures

Fast BASRPT achieves good delay performance, obtains a

higher throughput, and stabilizes the queue at an acceptable

level in our simulations. Table 1 shows the average and 99th

percentile FCT for both queries (responses) and background

flows, taking as reference SRPT. We observe that, for queries

the average FCT in fast BASRPT is less than 2× SRPT and

the 99th percentile is less than 4× SRPT, while for background

flows both the average and the 99th percentile are basically

consistent with SRPT. We know that the pFabric developed in

[3] totally adopts the SRPT flow scheduling and achieves near-

optimal flow completion times for all flow sizes. Thus the 2×
average FCT as well as 4× 99th percentile do not increase too

much. For throughput and queue length stabilization, Figure

5(a) depicts the global throughput of the two schemes in the

first 500 seconds, and Figure 5(b) exhibits the evolution of a

typical queue. In SRPT, the queue length keeps growing all the

time, while in fast BASRPT the queue stabilizes at 8×103 GB.

Besides, by statistics, the global throughput improves by 5352

Gbps compared with SRPT. Here we just choose V = 2500
for demonstration, and if V takes a larger value, according to

Theorem 1 the FCT will become even smaller.

To evaluate the fast BASRPT performance at various traffic

loads, Figure 6 compares the average FCT, 99 percentile FCT

for queries and overall throughput of the two schemes as

we vary the traffic load from 10% to 80%. We observe that

when the load is low, the instability nature of SRPT does

not exhibit and fast BASRTP shows almost identical FCT

as well as throughput performance as SRPT. As the load

grows, the average FCT of both SRPT and fast BASRPT

increases modestly, but the growth degree in fast BASRPT

is a little larger. Note that even at 80% of load, the average

and 99th percentile FCT of fast BASRPT only increase by

7.4% and 29.7% compared with SRPT. On the other hand,

the overall throughput in fast BASRPT is a little higher

under all load conditions. That is to say, BASRPT provides

a flexible scheduling. When the traffic load is relatively low,

BASRPT performs just like SRPT and achieves near-optimal

FCT performance. And when the load increases, BASRPT
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Fig. 6: Varying Loads

supplements SRPT and provides the stability guarantee.

C. Impact of Parameter V

Making V vary from 1000 to 10000, we show the through-

put and queue length evolution in Figure 7 and the average as

well as 99th percentile FCT in Figure 8. The large V is because

the two properties in the optimization objective are the average

selected flow size and the total queue length respectively.

Obviously, the latter is much larger and we need to give the

former a large weight. The results verify the role of parameter

V , a weight on FCT minimization against stabilizing queue.

As V becomes larger, both average and 99th percentile query

FCT sees significant reduction, while the stable point of queue

length goes up slightly. However, for background flows the

average FCT and the 99th percentile present different trends.

Relative to queries, background flows are larger, thus they are

deprived of more slots and the average FCT goes up. But

according to [1], most background flows are also small. When

V gets larger, flows at the 99th percentile could also preempt

more slots from those smaller background flows, in which case

the 99th percentile FCT slightly decreases. Furthermore, the

global throughput also sees a slight decline, that is because

the scheduler lays more emphasis on delay performance and

thus increases the stable queue length. However, we can see the

variation of V does not make a big difference on queue lengths

and throughput, but greatly improves the FCT performance,

which indicates the good properties of fast BASRPT.

VI. CONCLUSION

In this paper we developed BASRPT, a backlog-aware flow

scheduling algorithm in data center fabrics. Based on Lya-

punov optimization theory, we prove that the queue evolution

process is recurrent and the FCT could be pushed arbitrarily

close to optimal value within the range of stability. We also

proposed fast BASRPT, a fast and practical approximation of

BASRPT for reducing computational overheads. We perform

extensive flow-level simulations to evaluate our proposed

approach, leveraging real data center workloads and traffic pat-

terns. We find that fast BASRPT stabilizes the queues as long

as the traffic loads are within network capacity and meanwhile

achieves a relatively low FCT. Besides, the global throughput

is also improved. BASRPT provides a flexible framework to

better adapt to different performance requirements, since we

can balance delay and link utilization by setting different V .

647



 1.27

 1.275

 1.28

 1.285

 1.29

1000 2500 5000 7500 10000

T
hr

ou
gh

pu
t (

10
6  G

bp
s)

V

(a) Throughput

 2

 4

 6

 8

 50  100  150  200

Q
ue

ue
 L

en
gt

h 
(1

03 G
B

)

Time (s)

V=1000
V=2500
V=5000

V=7500
V=10000

(b) Typical queue lengths

Fig. 7: Throughput and queue lengths under different V
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[9] T. Bonald and L. Massoulié, “Impact of fairness on internet
performance,” in ACM SIGMETRICS Performance Evaluation
Review, 2001.

[10] S. Aalto and U. Ayesta, “Srpt applied to bandwidth-sharing
networks,” Annals of Operations Research, 2009.

[11] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy,
and S. Shenker, “phost: Distributed near-optimal datacenter
transport over commodity network fabric.”

[12] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow
scheduling with varys,” in Proceedings of the 2014 ACM
conference on SIGCOMM, 2014.

[13] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM CCR,
2011.

[14] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing
the one big switch abstraction in software-defined networks,”
in Proceedings of ACM conference on Emerging networking
experiments and technologies, 2013.

[15] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica, “Faircloud: sharing the network in
cloud computing,” in Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and
protocols for computer communication, 2012.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken, “The nature of data center traffic: measurements
& analysis,” in Proceedings of ACM SIGCOMM conference on
Internet measurement conference, 2009.

[17] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures
on Communication Networks, 2010.
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