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Abstract—The TCP incast problem attracts a lot of attention
due to its wide existence in cloud services and catastrophic
performance degradation. Some effort has been made to solve it.
However, the industry is still struggling with it, such as Facebook.
Based on the investigation that the TCP incast problem is mainly
caused by the TimeOuts (TOs) occurring at the boundary of
the stripe units, this paper presents a simple and effective TCP
enhanced mechanism, called GIP (Guarantee Important Packets),
for the applications with the TCP incast problem. The main idea
is making TCP aware of the boundaries of the stripe units, and
reducing the congestion window of each flow at the start of each
stripe unit as well as redundantly transmitting the last packet of
each stripe unit. GIP modifies TCP a little at the end hosts, thus it
can be easily implemented. Also, it poses no impact on the other
TCP-based applications. The results of both experiments on our
testbed and simulations on the ns-2 platform demonstrate that
TCP with GIP can avoid almost all of the TOs and achieve high
goodput for applications with the incast communication pattern.
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Window, Redundant Transmission

I. INTRODUCTION

The TCP incast problem occurs when multiple senders
synchronously transmit stripe units to a single receiver in data
center networks with high bandwidth and low Round-Trip
Time (RTT) [1]–[3]. Any sender can not transmit the next
stripe unit until all the senders finish transmitting the current
ones. The synchronized transmissions with this restriction is
called barrier traffic pattern [2], [17]. When the number of
the concurrent senders becomes large, the shallow switch
buffer [13], [14] is likely overwhelmed. If the retransmission
mechanism of TCP fails to recover the large amount of spilled
packets, TO periods will occur. The Minimum Retransmission
TimeOut (RTOmin) of TCP generally equals 200 milliseconds
in default, which is orders of magnitude of the microsecond-
granularity RTT in data center networks, so a large number of
TO periods will dramatically decrease the goodput of TCP.

The TCP incast problem attracts a lot of attention because
of the catastrophic goodput drop and the wide existence of
the incast communication pattern in big data systems. First,
companies offering online services generally store immense
amount of data using the distributed storage techniques, such
as BigTable [4], HBase [5], Hypertable [6]. When a client
retrieves data, parallel access to some of the distributed storage
nodes is required. The TCP incast throughput collapse is
firstly found in the distributed storage system PanFS [7]. In
Facebook, dramatic goodput reduction also happens when the
clients retrieve data from the memcached system. Second,
the Data-Intensive Scalable Computing Systems (DISC) [8],
such as MapReduce [9], Dryad [10], Spark [11], achieve high-
speed computing through the cooperation of many distributed

servers. Thus, many-to-one transmissions are needed to trans-
fer data from mappers to reducers during the shuffle phase.
A large number of packets are easily dropped at the switches
that connect to the reducers and thus the TCP incast problem
occurs [12]. Similarly, most of today’s large-scale, user fac-
ing web applications follow the partition/aggregation design
pattern [13], [14]. Large-scale tasks are divided into pieces
and assigned to different workers. All the responses from the
workers are aggregated to generate the final result. This pattern
improves the response speed. However, the aggregation period
naturally leads to the incast problem at the aggregators.

Some recent mechanisms can be employed to solve the
TCP incast problem. For example, several recently proposed
latency-aware transport protocols can avoid the TCP incast
problem by employing some switch mechanisms to reduce
packet losses [13]–[15]. However, possibly because it is a little
hard to implement switch-based mechanisms in practice, the
industry is still struggling with the TCP incast problem. For
example, Facebook engineers proposed limiting the number
of parallel requests to alleviate the problem in their recent
published work [16]. Considering that TCP is widely used in
production data centers [13], this paper aims to solve the TCP
incast problem by modifying TCP a little at the end hosts.

The typical end-host based solutions to the TCP incast
problem are decreasing RTOmin [1] and ICTCP [17]. RTOmin
of 200 milliseconds is proper for the traditional internet whose
RTT is in the granularity of milliseconds, but too large for
data center networks. Reducing it can diminish the bandwidth
wastage during TO periods. However, if the bandwidth ca-
pacity increases [18], [19], even if microsecond-granularity
TOs will bring large penalty to goodput. Besides, too small
RTOmin may cause spurious retransmissions, especially in
the external (at least one end point is outside the data center)
connections with larger RTT. ICTCP [17] prevents TOs by
dynamically adjusting the Advertised Window (awnd) at the
receiver side. However, it only focuses on the incast scenarios
where the last hop is the bottleneck.

Through observing lots of trace data in incast scenarios, we
found that two types of TOs should be avoided to improve the
goodput. First, the TOs caused by full window losses. When
the number of senders becomes large, the bandwidth occupied
by each sender is small. Possibly the packets in a full window
of an unlucky flow will be dropped because of severe traffic
bursts induced by the synchronized transmissions. This kind
of TOs is denoted as Full window Loss TimeOut (FLoss-TO).
Second, the TOs caused by Lack of ACKs (LAck-TO). Since
the receiver will not request the senders to transmit the next
stripe units until all of the senders finish their current ones,
once some packets are dropped at the tail of a stripe unit,
the Fast Retransmission or Fast Recovery (FR/FR) is hardly



triggered due to inadequate ACKs. Thus the lost packets will
not be recovered until the retransmission timer fires.

In this paper, two mechanisms are proposed to eliminate
these two kinds of TOs. One is reducing the initial congestion
window of each sender at the head of each stripe unit to
avoid FLoss-TOs. Another is redundantly transmitting the last
packet of a stripe unit to avert the LAck-TOs. Since the
enhanced mechanism avoids the two kinds of TOs mainly
through Guaranteeing Important Packets (GIP) not dropping,
we referred to this combined mechanism as TCP with GIP in
the rest of this paper.

We implement the GIP mechanism in CentOS-5.5 with
Linux kernel version 2.6.18. TCP with GIP follows the ba-
sic congestion control mechanism of TCP, and employs the
flags in the interface between the application layer and the
TCP layer to indicate whether the running application has the
incast communication pattern or not. For incast applications,
TCP with GIP works, that is, the last packet of a stripe unit
will be redundantly transmitted at most three times and each
sender decreases its initial congestion window at the head of
each stripe unit. While for other applications, the standard TCP
works. Thus, TCP with GIP keeps backward compatibility.

An experimental testbed is deployed with 24 Dell servers
and Gigabit Ethernet switches. The experimental results vali-
date that the TCP with GIP can avoid the TOs and thus solve
the incast throughput collapse. Also, it is able to adapt to more
network scenarios than ICTCP does since the latter can only
work when the link connecting to the receiver is the bottleneck
[17]. Furthermore, to evaluate the performance of TCP with
GIP in data centers with higher bandwidth and more senders,
series of simulations are conducted on the ns-2 platform. The
results demonstrate that TCP with GIP has good scalability
compared with the algorithm of reducing RTOmin.

From a practical point of view, the proposed TCP with GIP
has three advantages. First, it poses no impact on the other
TCP connections, including both the internal and the external
ones. Second, it does not rely on the OS version since it does
not need any special functions provided by the kernel, such as
high resolution timer. At last, it is very simple. Only dozens
of lines of codes are added to the TCP protocol.

The paper is organized as follows. The prior solutions to
the TCP incast problem and their features are summarized
in Section II. In Section III, the causes of the TCP incast
problem are analyzed. Section IV shows the GIP mechanism
in detail. Section V depicts the implementation of TCP with
GIP. In Section VI, the performance of TCP with GIP is
evaluated on our deployed experimental testbed, and compared
with NewReno. In Section VII, we conduct simulations on
the ns-2 platform with higher bandwidth and larger number
of senders, and compare the performance of TCP with GIP
with TCP NewReno and RTOmin=2 milliseconds. Section
VIII discusses the limitation and rationality of TCP with GIP.
Finally the paper is concluded in Section IX.

II. RELATED WORK

Since the TCP incast problem was proposed by Nagle et
al. in [7], some work has been done to address it.

Modify TCP. Since the incast goodput collapse is caused
by a large number of TO periods, some attempts are made

to avoid the timeouts, such as trying different TCP versions,
enabling Limited Transmit [20], reducing duplicate ACK
threshold, disabling TCP slow start [2], [3]. However, V.
Vasudevan et al. claimed that some TO periods in the incast
scenarios are hard to be eliminated without extra mechanisms,
so they suggested reducing RTOmin to alleviate the goodput
decline [1]. But this method poses implementation challenges
and may cause safety problems such as spurious retransmission
[21]. The above methods attempt to modify TCP at the sender
side. Yet the number of senders is possibly large in the incast
applications. Each sender is difficult to get enough information
to adjust its congestion window properly. So H. Wu et al.
proposed ICTCP [17] which controls flow rate by adaptively
adjusting the awnd at the receiver side. The receiver estimates
the available bandwidth and RTT to compute the reasonable
awnd. However, exact estimation of the real-time available
bandwidth and the time-varying RTT is difficult. And foremost,
ICTCP fails to work well if the bottleneck is not the link that
connects to the receiver.

Design New Transmission Protocol. M. Alizadeh et al.
observed the traffic characteristics in data center networks and
stated that to satisfy the requirements of long and short flows
and solve the TCP incast problem, the queue length must be
persistently low. They proposed DCTCP [13] which utilizes
the Explicit Congestion Notification (ECN) and revises the
TCP congestion control mechanism at the source to maintain
a small switch queue length and thus avoid timeouts. However,
the experimental results shown in [13] indicate that DCTCP
can not deal with the incast problem when the number of flows
is relatively large. D3 [14] and PDQ [15] provide delay-aware
transmission control by explicit rate control at switches and
emulating preemptive scheduling mechanisms, respectively.
However, it is too costly for all companies to substitute the
widely used TCP with a new transmission protocol, especially
with switch modification, only because of the TCP Incast
problem.

Employ Congestion Control Protocol at the Link Layer.
A. Phanishayee et al. tried to solve the TCP throughput
collapse by enabling Ethernet Flow Control (EFC) [2]. The
results look good but most switch vendors disable EFC due
to head-of-line blocking. P. Devkota et al. suggests preventing
packets dropping by modifying Quantized Congestion Notifi-
cation (QCN) [22], which is a link layer congestion control
mechanism designed for data centers. The authors found that
QCN proposed by IEEE 802.1 qau group could not solve
TCP incast collapse by observing simulation results. Thus,
they modified QCN by increasing the sampling frequency at
the Congestion Point (CP) and making the link rate increase
adaptively to the number of flows at the Reaction Point (RP).
However, the modified QCN introduces overhead for all the
other applications running in data center networks. Recently,
Y. Zhang et al. proposed another modified QCN mechanism,
fair QCN (FQCN), to mitigate the TCP Incast collapse in data
centers [23]. They found that the low TCP throughput in an
incast scenario with QCN is caused by the unfairness among
the flows. Therefore, they modified the congestion feedback in
QCN to improve the fairness of different flows along the same
bottleneck. However, FQCN requires switches to monitor the
packet arrival rate of each flow, which incurs high overhead in
data centers with many concurrent flows. What’s more, QCN
will cause collateral damage to the flows which do not share



0 20 40 60
0

0.5

1

Number of Senders

A
v
g

 #
 o

f 
T

O
s
 p

e
r 

S
tr

ip
e

 U
n

it
B=64KB, Su=256KB, C=1Gbps, Sp=1KB

 

 

LAck−TO

FLoss−TO

(a) 1 Gbps

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Number of Senders

A
v
g

 #
 o

f 
T

O
s
 p

e
r 

S
tr

ip
e

 U
n

it

B=64KB, Su=256KB, C=10Gbps,Sp=1KB

 

 

LAck−TO

FLoss−TO

(b) 10 Gbps

Fig. 1. Avg. number of LAck-TOs and FLoss-TOs with different link
bandwidth.

the bottleneck link [13].

III. CAUSES OF TCP INCAST PROBLEM

Examining lots of simulation and experimental data, we
found that two main categories of TOs lead to the TCP incast
problem. One is LAck-TO, which is caused by insufficient
packets for data-driven recovery at the tail of stripe units. For
example, if a flow losses the last packet of its current stripe
unit, then the only recovery method is waiting for timeout since
the incast application will not deliver new data to the TCP layer
until all the current stripe units are finished. The other one is
FLoss-TO, which is induced by the full window loss when
the traffic burst is too heavy at the start of a stripe unit. The
congestion window of each flow at the end of current stripe
units could be quite different and the summation of them may
be much larger than the bottleneck capacity. Possibly some
unlucky flows with small congestion windows will loss the
packets of the full windows.

Figures 1(a) and 1(b) draw the average number of different
kinds of TOs suffered by the most unfortunate flow per stripe
unit when the bottleneck link capacity is 1 Gbps and 10 Gbps,
respectively. The bottleneck buffer B = 64 KB, the packet size
is 1 KB, and the stripe unit size (Su) is 256 KB. Figure 1(a)
exhibits that when C=1 Gbps, most of the TOs are caused by
inadequate ACKs as the number of senders is smaller than 12,
while the TOs caused by the full window losses take majority
as the number of senders ranges from 12 to 30. After 30, the
two kinds of TOs are almost the same. Figure 1(b) shows that
when C becomes larger, both LAck-TOs and FLoss-TOs rarely
happen as the number of senders is small, and FLoss-TOs plays
a leading role when the number of senders is large.

The theoretical model also indicates that the incast through-
put collapse is indeed mainly caused by LAck-TOs and FLoss-
TOs [24]. Therefore, we need to design a mechanism that can
prevent the two kinds of TOs.

IV. TCP WITH GIP

We assume that switches employ the simple drop tail queue
management scheme. The awnd of the receiver is large enough
so as not to cap the TCP sending window. Next the basic idea
of TCP with GIP is presented, following by the mechanisms
of overcoming LAck-TOs and the FLoss-TOs.

A. Basic Idea

Note that TCP works well for traditional applications which
will continuously deliver data to the transport layer as long as

the applications have data to be sent. However, the applications
with the incast communication pattern deliver traffic in stripe
units. TCP layer will not receive the next stripe units until
all the senders finish their current ones. This feature disrupts
the normal operation of TCP. For example, the Fast Retrans-
mit/Fast Recovery (FR/FR) mechanism of TCP is designed
under the premise that after one packet being dropped, TCP
has packets to send to generate three duplicate ACKs which
will trigger the event of recovering the lost packet. However,
in the applications with the incast communication pattern, if at
least one of the last three packets of a stripe unit is dropped,
then TCP does not have enough packets to send to generate
sufficient duplicate ACKs. Therefore, the FR/FR mechanism
of TCP does not function at the end of the stripe units and
LAck-TOs happen. The FLoss-TOs are also caused by the
special incast communication pattern. In [25], David D. Clark
et al. suggested that the applications should break the data into
Application Data Units (ADUs), and the lower layers preserve
these frame boundaries as they process data. Enlightened by
the suggestion, in our proposed TCP with GIP protocol, we
let TCP be aware of the boundaries of the stripe units and use
the boundary information to deal with the special TOs.

First, at the tail of a stripe unit, since the TOs are caused
by insufficient ACKs, we let TCP transmit redundant packets
to generate duplicate ACKs to prevent this kind of TOs.
Then the question is which packets should be transmitted?
Should some of the packet at the end of the stripe units
be retransmitted? Or should some extra packets be added?
Besides, how many packets should be transmitted? In Section
IV-B, we will describe our solution in detail.

Second, at the head of a stripe unit, all the senders start
from their saved congestion window values at the end of
the last stripe unit and inject packets to the network at the
same time. However, the summation of these initial congestion
windows is likely larger than the network capacity. This is
because some senders finish their last stripe units earlier than
the others, then the remainder will take more bandwidth than
1
N of the bottleneck link capacity (Assume there are a total of
N senders.). Thus, the injected packets at the start of stripe
units will easily cause many packets being dropped. As the
number of senders increases, the congestion window of each
connection is small, thus full window losses possibly happen.
To solve this problem, the initial congestion window value
should be adjusted to match the bottleneck link bandwidth. In
Section IV-C, we will discuss how large the initial congestion
window should be.

B. Overcome LAck-TOs

1) Which lost packets cause LAck-TOs: LAck-TOs are
caused by packet losses at the end of stripe units. Let the
last three packets of a stripe unit be denoted as 1, 2, 3,
respectively. Fig. 2 summarizes different combinations of the
dropped packets that cause LAck-TOs, in a simulation scenario
with 64 KB buffer size, 1 Gbps bottleneck bandwidth, and 256
KB stripe unit size. We are aware that when the number of
senders is determined, each of the last three packets has the
comparative loss probability, and two of them may be lost
together, but the situation that all three of them are lost rarely
happens.



0 20 40 60
0

0.5

1

1.5

2

B=64KB, Su=256KB, C=1Gbps,Sp=1KB
#
 o

f 
L
o
s
t 
P

k
ts

 p
e
r 

S
tr

ip
e
 U

n
it

Number of Senders

 

 

D1

D2

D3

D12

D23

D123

Fig. 2. Dropped packets which result in LAck-
TOs.

0 20 40 60
0

0.5

1

Number of Senders

#
 o

f 
L
A

c
k
−

T
O

s
 p

e
r 

S
tr

ip
e
 U

n
it

B=64KB, Su=256KB, C=1Gbps,Sp=1KB

 

 

Pattern 333

Pattern 123

TCP NewReno

Fig. 3. Number of LAck-TOs per stripe unit.

0 5 10 15 20
0

5

10

15

20

25

Flow ID

C
w

n
d
 v

a
lu

e

B=64KB, Su=256KB, C=1Gbps,Sp=1KB

 

 

Suffer FLoss−TO

Not suffer FLoss−TO

Fig. 4. cwnd value at the start of the 7-th stripe
unit.

2) Basic idea to avoid LAck-TOs: To avoid the LAck-TOs,
it is necessary to ensure all of the last three packets reach the
receiver before the corresponding retransmission timer fires.
Hence, once one of the last three packets is dropped, the sender
should enter FR/FR period instead of waiting for the expiration
of the corresponding retransmission timer. However, TCP can
not enter FR/FR period without enough ACKs.

Therefore, one straightforward way is to insert several extra
packets at the tail of a stripe unit to generate more ACKs.
Once the receiver receives all the current stripe units, it will
request the senders to transmit the next ones no matter whether
the extra packets have reached the receiver or not. However,
in this method, the extra packets need to be specially dealt
with. For example, once they are lost, they are not required to
be retransmitted to guarantee the reliability. Another method
is redundantly transmitting some of the last three packets no
matter whether they are lost before their retransmission timer
fires. This method can not only generate more ACKs but also
improve the probability that the last three packets success-
fully reach the receiver before LAck-TOs occur. Besides, this
method can be more easily deployed since it does not need to
manually generate new packets at the TCP layer.

3) Which packets should be redundantly sent: Intuitively,
since LAck-TOs are caused by the loss of the last three packets,
which has almost the same loss probability (see Figure 2), the
last three packets should be redundantly transmitted in turn,
named as Pattern 123, to ensure that they successfully reach
the receiver without suffering LAck-TOs. Note that in this
method, the Congestion Window (cwnd) should be decreased
by 3 before the redundant retransmission. Otherwise, all the
three redundantly retransmitted packets will be sent at the
same time since all the packets with sequence number within
(min{cwnd, awnd}+highest_ack) can be transmitted.
Fig. 3 shows the goodput under Pattern 123. Unfortunately, the
results of this repetitive transmission pattern are unsatisfactory.
Only part of LACK-TOs can be avoided.

Investigating the trace data, we found that two main reasons
lead to the unsatisfactory result under Pattern 123.

First, under Pattern 123, if only the last packet is dropped,
then the receiver will see duplicate packets 1 and 2 and ignore
them instead of sending back ACK. Thus, the senders can not
receive sufficient ACKs to trigger fast retransmission.

Second, under Pattern 123, some of the redundantly
transmitted packets are easily dropped. According to the

window-based congestion control scheme employed by TCP,
upon receiving one ACK, cwnd increases 1

cwnd
in Conges-

tion Avoidance (CA) periods. The sender then transmits the
packets whose sequence number is within (min{cwnd,
awnd}+highest_ack). Note that cwnd will not increase
until it has passed the next integer. If the new ACK increases
the value of cwnd by 1, then two packets will be sent in
succession. However, one ACK implies that only one packet
departs from the queue, therefore the second transmission is
excessive and likely to be dropped. Here is a simple example.
We do not consider the awnd limitation at the receiver side. If
the slow start threshold is 2 packets and the current cwnd value
is 2, then after receiving a new ACK, the cwnd increases to be
cwnd+ 1

cwnd
=2+ 1

2=2.5 and the highest_ack increases by 1.
Then one more packet can be sent based on the sequence num-
ber upper bound (min{cwnd, awnd}+highest_ack).
After receiving another ACK, cwnd becomes to be 2.5+ 1

2.5 =
2.9. Similarly, only one packet is injected to the network.
However, if one more new ACK arrives, the cwnd value will
increase to be 2.9+ 1

2.9 = 3.2448, that is, the cwnd passes the
next integer 3. Therefore, two more packets will be transmitted.
Since one new ACK means the departure of one packet from
the queue, the second transmitted data packet will possibly be
lost. This phenomenon is explained in detail in [26].

When the cwnd becomes smaller as the number of senders
increases, the probability that cwnd just passes the next integer
after receiving an ACK will get larger. Therefore, under Pattern
123, possibly two packets will be sent in succession if the
cwnd has just passed the next integer, which violates the
pipeline model of TCP since only one ACK is received. Hence,
the second packet may be dropped. Observing the simulation
data, many redundantly transmitted packets are indeed dropped
due to the above reason.

To avoid the drawbacks of Pattern 123, we can make use
of the barrier traffic pattern of the incast applications and only
redundantly transmit the last packet. As stated previously, the
incast applications will not deliver the next stripe unit to the
TCP layer until the current one is finished. Hence, no matter
how large the sending window is, the sender transmits at most
one packet upon receiving one ACK. Therefore, the pipeline
keeps dynamically equilibrium and thus prevents packets from
dropping. The probability of the successful redundant trans-
mission can also be improved.

Then how many redundant transmissions are proper? Con-
sider the worst situation. If the last two packets are dropped,
which likely occurs (Fig. 2), then at least 3 repetitive trans-



missions are needed to generate enough duplicate ACKs to
drive TCP to enter FR/FR procedure. Since more repetitive
transmissions waste more bandwidth, the number of redundant
transmissions is set to 3 in the GIP mechanism. Figure 3 shows
the number of LAck-TOs per stripe unit under TCP NewReno
and TCP with different retransmission patterns. We can see
that few LAck-TOs happen when the last packet is repetitively
transmitted 3 times, i.e., following Pattern 333.

C. Overcome FLoss-TOs

1) Why the packets in a full window are lost: As stated
in Section IV-A, as the number of senders becomes relatively
large, the asynchronism of their cwnd evolution causes that
some of them finish their stripe units earlier. Then the others
occupy the available bottleneck bandwidth to finish their re-
maining data. Thus, at the end of the stripe unit, the summation
of the cwnd of all the flows will highly exceeds the bottleneck
buffer. After they inject the packets in their whole windows
synchronously at the start of the next stripe unit, lots of packets
will be dropped. The unlucky flow, which loses the packets in
its full window, will suffer a FLoss-TO.

The simulation data validates our analysis. For example,
Fig. 4 illustrates the cwnd values of different flows at the
beginning of the 7-th stripe unit in an incast scenario where
buffer size B = 64 KB, stripe unit size Sb = 256 KB, packet
size Sp = 1 KB and link capacity C = 1 Gbps. The solid
bars are the cwnd values of the flows that suffer FLoss-TOs
at the start of the 7-th stripe unit, and the hollow bars present
the cwnd values of the flows without experiencing FLoss-TOs.
Obviously, all the flows suffering FLoss-TOs have small cwnd
(i.e., cwnd=1), while many of the other flows have relatively
large cwnd values. What’s more, the summation of all the
flows is 117 pkts, which is far more than the network capacity,
CD + B = 72.5 pkts. Therefore, at the beginning of the 7-
th stripe unit, all the flows simultaneously inject the packets
according to their sending windows, then the buffer can not
accommodate all of them. The flows with small cwnd will
likely lose the packets in a full window.

2) Avoiding full window loss: Since the full window loss is
caused by the large summation and big variance of the initial
cwnd size of the senders, one straightforward method is to
reduce the initial cwnd of each flow at the start of each stripe
unit. The value should be small enough so that the bottleneck
buffer can accommodate most of the packets in the first RTT
period. Besides, the cwnd of each flow should be identical so
that each flow can fairly share the bandwidth. Therefore, in
GIP, all the flows start from slow start phase at the beginning
of each stripe unit to avoid FLoss-TOs.

V. IMPLEMENTATION

We implement the GIP mechanism in CentOS-5.5 whose
kernel version is 2.6.18. First, we properly set some parameters
to ensure that the maximum rate of TCP can reach about
1 Gbps. Due to the relatively small default window size of
TCP, generally the rate of a TCP connection can not reach
up to 1 Gbps even if the network capacity is large enough.
We modify the default values of both net.ipv4.tcp_wmem
and net.ipv4.tcp_rmem to be 128 KB, and their maxi-
mums are set to be 256 KB. tcp_wmem denotes the send
buffer memory space allocated to each TCP connection, and

tcp_rmem stands for the receive buffer size of each TCP
connection. Then we use Iperf to test the maximum rate of
one TCP session between two PCs connected by a Gigabit
switch. The result approximates to 950Mbps.

Subsequently, we add the proposed GIP function into TCP
NewReno. The implementation mainly includes three parts:
differentiating the boundaries of the stripe units, redundantly
transmitting the last packet of each stripe unit for at most 3
times, and forcing each flow to start from the slow start period
at the start of each stripe unit. They are implemented in three
functions respectively: the socket interface send(), functions
tcp_sendmsg() and tcp_rcv_established(). Fig. 5
shows the changes. Note that, only the TCP sender side is
modified.

A. Notifying the Boundaries of Stripe Units

All the application programming interfaces that are used to
transfer data from the application layer to the TCP layer have a
parameter flags, i.e., ssize_t send (int s, const
void ∗buf, size_t len, signed int flags).
With the evolution of TCP protocols, some bits of the flags
are gradually defined to indicate some special requirements.
For example, flags=0x40 (MSG_DONTWAIT) enables
non-blocking operation. Until now, the maximum defined
flags is 0x8000 (MSG_MORE since Linux kernel 2.4.4)
which notifies TCP that the application has more data to
send. Since the type of flags is signed int, 31 bits
can be used. MSG_MORE uses the 15-th bit. In the GIP
mechanism, the application layer sets the 16-th bit of flags
(i.e., flags = 0x10000) when calling send() to notify
the TCP layer that the data chunk in buf is the tail of the
current stripe unit. Since the applications with the incast
communication pattern transmit data in units of strip units,
clearly they know the size of a stripe unit. Thus, it is easy for
the applications to notify the boundaries of the stripe units.

B. Redundant Transmissions at the Tail of Stripe Units

If the 16-th bit of the flags is 1, TCP layer knows that
the data chunk delivered by the application layer is the tail
of the current stripe unit. Then after transmitting the data
chunk, TCP will retransmit the last packet once if it receives
a new ACK which is not for the last packet. This process
repeats at most 3 times. It is implemented in the function of
tcp_rcv_established() as shown in Fig. 5. When the
above conditions of retransmitting the last packet satisfy, TCP
calls tcp_retransmit_skb() to redundantly transmit the
last packet. A variable is added to control the number of the
redundant transmissions. Note that the sequence number of the
transmitted packet should be larger than the maximum number
of the acknowledged packets. Thus if the sender has received
the ACK of the last packet, it will not transmit it any more.

C. Reducing cwnd at the Head of Stripe Units

In default, the delayed ACK mechanism is enabled to
reduce the number of ACKs [28]. If each flow sets cwnd
to 1 at the start of each stripe unit, the receiver will not
send an ACK until the delayed ACK timer expires. Since the
default value of the delayed ACK timer is 40ms, which is
quite large compared with the microsecond-granularity RTTs
in data center networks, we set cwnd of each sender to
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Fig. 7. Normalized goodput with different TCP versions.

2 at the start of every stripe unit to avoid the bandwidth
wastage caused by the delayed ACKs. This part is imple-
mented in the function of tcp_sendmsg() as shown in
Fig. 5. The head of a stripe unit can be naturally known
since the 16-th bit of the flags is used to indicate the
tail of the last stripe unit. Besides, since each call of
tcp_retransmit_skb() increases tp->retrans_out
by 1, the value of tcp_packets_in_flight() will be
greater than cwnd after transmitting several stripe units,
which blocks TCP from sending packets. Thus, we reset
tp->retrans_out to 0 at the start of each stripe unit.

In sum, the implementation of GIP is quite easy, only
about 30 lines of codes are added. Besides, the enhanced
mechanism GIP is backward-compatible with TCP since it
has no impact on the other applications, and follows most of
the TCP congestion control mechanisms. The applications can
choose whether to enable the TCP GIP function by setting the
16-th bit of flags or not.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

As shown in Fig. 6, our basic testbed is comprised of
24 servers and one HP ProCurve 2910al-48G-PoE+ Switch
J9148A. Each PC is a DELL OptiPlex 360 desktop with Intel
2.93GHz dual-core CPU, 6GB DRAM, 300GB hard disk, and
one Intel corporation 82567LM-3 Gigabit NIC (Network In-
terface Card). The operating system is CentOS-5.5.The default
RTOmin is 200 ms.

We try several TCP variants, including Cubic, Illinois,
Newreno and so on, and implement Newreno with RTOmin=2
ms by adding the patch in [29]. The Illinois and Newreno with
RTOmin=2 ms are implemented in Linux kernel 2.6.28. The
others are in kernel 2.6.18. Fig. 7 depicts their goodput results
under the workload with incast communication pattern. We
can see that the performance of all the TCP variants with the
default RTOmin value is similar. Thus, we only compare our
algorithm with TCP Newreno in the next subsections. Besides,
we can see that the mechanism that reduces RTOmin to 2 ms
does not suffer the TCP incast problem. Thus, we ommit the
results of it in the following experiment results. However, in
large scale networks with the incast communication pattern,
RTOmin=2 ms suffers many spurious timeout. Therefore, the
results of it will be shown in our large scale simulations.
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Bottleneck link R
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Fig. 14. The incast scenario where the intermediate link is the bottleneck.

B. Without Background Traffic

Fig. 8 shows the normalized goodput of TCP with GIP and
TCP NewReno with different stripe unit sizes. The goodput of
TCP NewReno collapses when the number of senders is larger
than about 12, and the smaller is the stripe unit, the lower
stable goodput TCP NewReno achieves. While TCP with GIP
performs well as the number of senders increases. The link
utilization is about 90%.

Specifically, when the number of senders is quite small,
the performance of TCP with GIP is slightly worse than
TCP NewReno, which mainly attributes to the mechanism
of avoiding FLoss-TOs. To alleviate the traffic bursts and
unfairness of different flows at the start of each stripe unit,
each flow is compelled to begin with a slow start phase.
Therefore, when the number of senders is quite small, the
bottleneck is still under-utilized when a stripe unit is finished.
However, in typical incast applications, such as MapReduce,
filesystem reads, generally the number of senders is relatively
large. Hence, TCP with GIP performs well in most situations.

Fig. 9 presents the average number of the TO periods
suffered by the most unfortunate flow per stripe unit with
different stripe unit sizes. TCP with GIP suffers few TO
periods, which indicates that the GIP mechanism removes
most of TOs and thus improves the goodput. Although the
experiment with 256 KB stripe unit size suffers slightly more
TO periods than that with 64 KB and 128 KB stripe unit,
the ratio of the time consumed by the TO periods to that of
transmitting a stripe unit is almost the same. Therefore, the
goodput with different stripe unit size are almost the same as
shown in Fig. 8.

C. With Background Traffic

1) Last hop is the bottleneck: We do not consider back-
ground traffic in the above experiments. To evaluate the
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Fig. 8. Normalized goodput with different stripe
unit sizes.
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Fig. 9. Avg number of TO periods suffered by
the unluckiest flow in one stripe unit.
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Fig. 10. Normalized goodput with different stripe
unit sizes with UDP background traffic.
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Fig. 11. Average number of TO periods suffered
by the unluckiest flow with UDP background
traffic.
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Fig. 12. Normalized goodput with UDP back-
ground traffic in multiple hops.
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Fig. 13. Average number of TO periods suffered by
the unluckiest flow with UDP background traffic in
multiple hops.

performance of the GIP mechanism in incast scenarios with
background traffic, a persistent UDP background traffic is
injected into the bottleneck link at the rate of 100 Mbps.
Figure 10 displays the normalized goodput versus the number
of the senders with different stripe unit size. We can see that
TCP with GIP still outperforms TCP NewReno and approaches
to 0.8 Gbps goodput. Compared with Figure 8, the general
tendency of TCP with GIP and TCP NewReno is similar. But
the goodput is about 0.1 Gbps smaller than that in Fig. 8, since
0.1 Gbps bandwidth is consumed by the UDP background
traffic.

The average number of the TO periods occurred in each
stripe unit is plotted in Fig. 11. TOs happen more frequently in
TCP NewReno as the number of senders increases, while GIP
undergos few TO periods. The number of TOs in TCP with
GIP is slightly larger than that in Fig. 9 since the background
traffic contends for the bottleneck bandwidth, which results in
more dropped packets.

2) Intermediate link is the bottleneck: ICTCP [17] needs
to know the available bandwidth of the bottleneck to fairly
allocate it among the senders by dynamically adjusting the
value of awnd. It estimates the available bandwidth at the
receiver side through observing the total incoming traffic to
the receiver NIC. When the link connecting to the receiver is
the bottleneck, it works well. However, when the bottleneck is
one intermediate link, ICTCP fails to work normally. To verify
whether TCP with GIP can adapt to this network configuration,
we construct the network topology as shown in Figure 14.
A Cisco Catalyst 2960G Ethernet Gigabit Switch is inserted

between the HP ProCurve switch and the receiver. Server H1
sends UDP traffic to server H2 at the rate of 100 Mbps, then
the link (A1, A2) becomes the bottleneck.

The normalized goodput is shown in Figure 12. TCP with
GIP achieves about the same goodput as that in Fig. 10,
which implies that the normal running of TCP with GIP is
not restricted by the location of the bottleneck link, but it is
the inherent limitation of ICTCP. Figure 13 reveals the average
number of the TO periods suffered by the unluckiest flow per
stripe unit. The number of TOs suffered by TCP with GIP and
TCP NewReno is close to that in Fig. 11.

VII. SIMULATION

In practice, the bandwidth may be 10Gbps or even higher
and one job may involve hundreds of servers [30]. To evaluate
the performance of TCP with GIP with higher bottleneck
capacity or larger number of senders, we implement our
algorithm on the ns-2 platform and compare its performance
with both TCP NewReno and RTOmin=2 ms. The topology
used in our simulations is the same as that in Fig. 6.

A. Without Background Traffic

Fig. 15 presents the goodput of TCP with GIP, RTOmin=2
ms and TCP NewReno. The bandwidth of all the links is 1
Gbps. The packet size is 1 KB, and the bottleneck buffer is
128 KB. The propagation delay is about 117 microseconds.
We can observe that TCP with GIP outperforms the other two
mechanisms. In TCP NewReno, the goodput collapse when
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Fig. 15. Normalized Goodput versus the num-
ber of senders with C=1Gbps.
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Fig. 16. Average number of TO periods suffered
by the unluckiest flow in one stripe unit.
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Fig. 17. Normalized Goodput versus the number
of senders with C=10Gbps.
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Fig. 18. Average number of TO periods suffered
by the most unfortunate flow in one stripe unit
with 10 Gbps link.
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Fig. 19. Normalized goodput versus the number
of senders with TCP background traffic.
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Fig. 20. Average number of TO periods suffered by
the most unlucky flow in one stripe unit with TCP
background traffic.

the number of sender is larger than about 16. For RTOmin=2
ms, the bottleneck link utilization is larger than 70% when the
number of senders is smaller than 100. However, the utilization
degrades as the number of senders increases. While TCP with
GIP always keeps high goodput.

Fig. 16 exhibits the average number of the TOs suffered
by the most unfortunate flow during each stripe unit. TCP
with RTOmin=2 ms suffers far more TOs than both TCP
NewReno and TCP with GIP do when the number of senders
is larger than 50. To present the results more clearly, we
use logscale y-axis. Specifically, no marks means that no
TO appears. We can see that TCP with GIP suffers few TO
periods, which indicates that the FLoss-TOs and LAck-TOs
are indeed avoided by reducing cwnd at the start of each
stripe unit and redundantly transmitting the last packet for
three times at the tail of each stripe unit. The phenomenon
that RTOmin=2 ms suffers so many TO periods is caused by
the relatively large queue buildup in data centers [13]. As the
number of senders increases, the bottleneck buffer is readily
overwhelmed. When the buffer is full, the queuing delay at
the intermediate switch plus the transmission delay is about
B
C +D = 128×103×8

109 + 0.117 ≈ 1.14ms. If one packet waits
for a relatively long time (i.e., more than 0.86 ms) at the
sender or receiver to be processed, the retransmission timer
will expire and thus a spurious TO period happens. Therefore,
if RTOmin=2 ms, the TOs occur quite frequently. This can
also explain why the goodput of RTOmin=2 ms degrades as
the number of senders increases in Fig. 15.

Fig. 17 presents the normalized goodput of the three mech-

anisms with bottleneck bandwidth C = 10 Gbps. TCP with
GIP outperforms both RTOmin=2 ms and TCP NewReno.
Similar to the results in Figure 8, the performance of TCP with
GIP is a little worse than both TCP NewReno and TCP with
RTOmin=2 ms when the number of senders is quite small, but
the link utilization of TCP with GIP is about 70% higher than
the other two mechanisms as the number of senders is larger
than 50. Compared with Fig. 15, RTOmin=2 ms performs
worse with higher bottleneck bandwidth.

Fig. 18 shows the average number of the TO periods
suffered by the most unlucky flow with C = 10 Gbps. In
RTOmin=2 ms, the average number of the TO periods per
stripe unit is smaller than that in Figure 16. This is because the
queuing delay is smaller when C = 10 Gbps, fewer spurious
TOs appear. However, the bandwidth wasted during one TO
period is larger when the link capacity is higher. Therefore,
the normalized goodput is still small.

B. With Background Traffic

The background traffic is not configured in the above
simulations. In this subsection, we evaluate the performance
of GIP with background traffic. A long term TCP flow
is configured as the background traffic. Figure 19 presents
the normalized goodput of the TCP with GIP, TCP with
RTOmin=2 ms and TCP NewReno. Compared with the results
in Figure 15, the goodput of all the three mechanisms decrease
slightly. However, the whole tendency does not change. TCP
NewReno still suffers goodput collapse as the number of
senders increases, RTOmin=2 ms can not work well as the



number of senders increases. While TCP with GIP can achieve
stable and high goodput. Fig. 20 shows the average number of
the TOs suffered by the most unfortunate flow per stripe unit.
Compared with the results in Figure 16, the average number
of the TOs in the scenario with TCP background traffic is a
little more. This is because the bottleneck bandwidth is shared
by more flows, and thus more packets are possibly dropped.

VIII. DISCUSSION

A. If the Number of Senders is Quite Small

One limitation of TCP with GIP is under-utilization of the
bottleneck link when there are only several senders. However,
in practice, the number of senders is usually not very small,
otherwise the incast collapse will not happen. For example, in
PanFS architecture with 64 KB stripe unit size, the throughput
collapse does not occur until the number of OSD (Object-based
Storage Service) is larger than about 14 [7]. Furthermore,
the bottleneck link usually carries background traffic, which
reduces the available bandwidth for the incast application.

Next, we compute the size of one stripe unit required
to ensure that the TCP with GIP sufficiently utilizes the
bottleneck link. Since we reduce the cwnd of each sender to
2 at the beginning of each stripe unit. Let Ass+ca denote the
total number of packets transmitted during a slow start phase
and the following CA phase. If the product of the stripe unit
size and the number of senders i exceeds Ass+ca, that is

i× Su ≥ Ass+ca (1)

the link will be sufficiently utilized. According to the TCP
congestion control mechanism [31], the expected number of
the transmitted packets during a slow start phase and the
following CA phase, Ass+ca, is

Ass+ca =

log2
W (i)

2∑
i=1

2i +

W (i)
2∑

i=0

(
W (i)

2
+ i)

= 2log2
W (i)

2 +1 − 1 +
3

8
(W (i))2 +

3

4
W (i)

(2)

where W (i) is the maximum congestion window size of one
connection. During a RTT period, the number of the incoming
packets is i×W (i), and the number of the outgoing packets
is C × RTT = C × (D + B

C ) = CD + B. According to the
flow conservation principle, we can get

W (i) =
CD +B

N
(3)

When the number of senders i = 1, there is no barrier
synchronized transmissions. The application will not suffer
the throughput collapse. Hence, in the incast applications, the
number of senders at least equals to 2. If C=1 Gbps, D=100
us, B=64 KB, i=2, Sp=1 KB, then Ass+ca ≈ 608 pkts.

Figure 21 presents the minimum stripe unit size required to
saturate the bottleneck link. We can see that, as the number of
the senders increases, the minimum stripe unit size decreases
dramatically. When the number of the senders is larger than
about 6, only less than 10KB stripe unit can fill the bottleneck
link. And when i > 14, only less than 1KB is enough
for TCP with GIP to sufficiently utilize the bottleneck link.
What’s more, the number of the senders is generally several
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Fig. 21. The minimum stripe unit size required to saturate the bottleneck
link without any background traffic.

hundreds or even thousands in the applications with incast
communication pattern, such as in the Facebook’s memcache
system [16] and in the large-scale web query jobs. Therefore,
we think that the simplicity and efficiency of TCP with GIP
can offset this limitation.

Furthermore, this limitation of TCP with GIP can be over-
come at the cost of increasing complexity. The above under-
utilization attributes to the small initial congestion window
size. which is similar to the problem described in RFC 3390
[32], which suggests increasing the initial congestion window
size to improve the TCP throughput in networks with high
bandwidth and large propagation delay. In TCP with GIP, the
initial congestion control window size can be increased at the
beginning of each stripe unit to improve the link utilization.
For example, each flow can set the initial congestion window
Ws to Su

T , where Su is the stripe unit size in units of packets.
T is the time spent transmitting the last stripe unit. Su and T
can be estimated. However, the goal of TCP with GIP is to
solve the TCP incast problem as the number of the senders is
relatively large by modifying TCP as less as possible, and this
problem has little impact on TCP with GIP. Thus, the dynamic
initial window mechanism is not investigated in depth in this
work.

B. Feasibility of GIP

The main difference of the incast applications and other
TCP-based applications is the barrier traffic pattern. The GIP
mechanism shuns the impact of the pattern through some
specific process, namely, reducing cwnd at the start of each
stripe unit and redundantly transmitting the last packet of each
stripe unit for at most 3 times. Next we will discuss whether
this enhanced mechanism affects TCP’s normal running.

In the Linux TCP implementation, packets can not be
sent until cwnd > tcp_packets_in_flight(). After
successful transmission of one stripe unit, the value of
tcp_packets_in_flight() will be cleared to 0. Hence,
reducing cwnd to 2 at the start of each stripe unit doesn’t
affect the normal work of TCP.

The second part of GIP is redundantly transmitting
the last packet of each stripe unit for 3 times using
tcp_retransmit_skb() function. Since each redundant
packet can not be sent until one ACK is received, it obeys
the pipeline model of TCP. If some of the last three packets
in a stripe unit are lost, and the three redundant packets are
successfully transmitted, then at least 3 duplicate ACKs are
sent to the sender to trigger FR/FR procedure. Otherwise, if



no packet of one stripe unit is lost, the receiver will receive
the last packet for 4 times. Hence it responses to the sender
with 3 duplicate ACKs. But this will not trigger unnecessary
FR/FR procedure, since when all the data is transmitted
successfully, both the transmitting and the retransmitting queue
at the sender are empty and all the socket buffers have
been released. Only the value of tp->retrans_out will
be influenced by GIP. After tcp_retransmit_skb() is
called for 3 times, tp->retrans_out will increase by 3.
Even if 3 duplicate ACKs for the last packet are received,
tp->retrans_out will not decrease since the last packet
has been successfully transmitted, which means the retrans-
mission is unnecessary. As a result, tp->retrans_out will
increase by 3 after the transmission of each stripe unit, which
makes tcp_packets_in_flight() also increase by 3.
After several units are transmitted, tcp_packes_in_fli
ght() will be larger than cwnd, which blocks the packet
transmissions. In normal state, tp->retrans_out de-
creases to 0 after one stripe unit is finished. Hence, GIP resets
tp->retrans_out to zero to ensure TCP work normally.

IX. CONCLUSION

In this paper, an enhanced mechanism, GIP, is designed
and implemented to solve the TCP incast problem. To avoid
FLoss-TOs and LAck-TOs, which are the main causes of the
TCP incast problem, the GIP mechanism reduces the conges-
tion window at the start of each stripe unit and redundantly
transmits the last packet of every stripe unit for at most three
times. GIP is implemented in a testbed with 24 servers and
Ethernet Gigabit Switches. The experimental results validate
that GIP can properly overcome the incast problem at low
cost. Furthermore, we conduct series of simulations on the ns-
2 platform to evaluate the performance of GIP with higher
bottleneck bandwidth and larger number of senders. The
simulation results demonstrate it has good scalability.
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