
Slowing Little Quickens More: Improving DCTCP
for Massive Concurrent Flows

Mao Miao, Peng Cheng, Fengyuan Ren, Ran Shu
Department of Computer Science and Technology, Tsinghua University, China

Tsinghua National Laboratory for Information Science and Technology, China

{miaomao, chengpeng5555, renfy, shur11}@csnet1.cs.tsinghua.edu.cn

Abstract—DCTCP is a potential TCP replacement to satisfy
the requirements of data center network. It receives wide
concerns in both academic and industrial circles. However,
DCTCP could only support tens of concurrent flows well
and suffers timeouts and throughput collapse facing numerous
concurrent flows. This is far from the requirement of data center
network. Data centers employing partition/aggregation pattern
usually involve hundreds of concurrent flows. In this paper, after
tracing DCTCP’s dynamic behavior through experiments, we
explored two roots for DCTCP’s failure under the high fan-in
traffic pattern: (1) The regulation mechanism of sending window
is ineffective when cwnd is decreased to the minimum size;
(2) The bursts induced by synchronized flows with small cwnd
cause fatal packet loss leading to severe timeouts. We enhance
DCTCP to support massive concurrent flows by regulating the
sending time interval and desynchronizing the sending time
in particular conditions. The new protocol called DCTCP+
outperforms DCTCP when the number of concurrent flows
increases to several hundreds. DCTCP+ can normally work to
effectively support the short concurrent query responses in the
benchmark from real production clusters, and keep the same
good performance with the mixture of background traffic.

Keywords— DCTCP; Timeout; Massive concurrent flows;
Throughput; Latency

I. INTRODUCTION

Today’s data centers have been hosting more and more

diverse applications, mixing workloads with different require-

ments, including low predictable latency and large sustained

throughput. In this environment, traditional TCP protocol falls

short. DCTCP [1] is proposed to satisfy the requirements

for data center’s applications: low latency for short flows,

high tolerance for micro burst traffic and high utilization for

long flows. Due to the effectiveness in congestion control

and the simplicity and compatibility for deployment, DCTCP

owns its dominant influence in both academic and industrial

circles. Subsequent work, such as D2TCP protocol [2], the

High-bandwidth Ultra-Low (HULL) architecture [3] and Data

Center Congestion Control [4], are all built on the basis of

DCTCP. Microsoft also claimed that Windows Server 2012

had supported DCTCP to deal with the network congestion in

a more intelligent way [5].

Although DCTCP contributes significant performance im-

provement, it still has nonnegligible limitations. As claimed

in the original paper [1], DCTCP can only support tens of

concurrent flows well when commodity switches employing

static shared buffer are deployed in data centers. But it

suffers from severe timeouts and throughput collapse as mas-

sive concurrent flows are active, which significantly extends

the flow completion time (FCT). However, the number of

concurrent flows in typical online services employing the

divide and conquer computing paradigm is far greater than

that DCTCP can support well with. For example, Yahoo!’s

M45 supercomputing MapReduce cluster [6] parallelizes and

distributes jobs across large clusters with each job consisting

of hundreds of Maps on average; Google web search [2][7]

and Microsoft Bing [8] are reported the interactive service

processing consists of parallelization across 10s-1000s of

servers and aggregation of responses across network. Many

measurements on productive data centers also confirm the high

fan-in traffic pattern [9][10]. Therefore, supporting massive

concurrent flows is necessary in today’s data center network.

Unfortunately, DCTCP is unable to work well in this situation.

In this paper, we focus on remedying the pitfall of DCTCP.

The main contributions are two-fold.

First, we trace and examine DCTCP’s dynamic behavior

at senders in real experiments, identify the radical reasons

for DCTCP’s failure under the high fan-in traffic pattern: (1)

DCTCP is unable to further adjust the sending rate when

the congestion window (cwnd) of some flows reaches to the

minimum size despite receiving the ECN feedback yet. (2)

The bursts caused by the synchronization of concurrent flows

with small cwnd lead to the fatal packet loss which directly

triggers timeouts, since the pipeline capacity in data center

network is relatively small. N synchronized concurrent flows

with the minor cwnd value could easily overflow the buffer

associated with the bottleneck link, resulting in the awful Full
Window Loss Timeout and Lack of ACKs Timeout [11][12].
Second, in the light of reasoning, we propose DCTCP+

to support massive concurrent flows. The core idea of the

enhancement mechanism employed by DCTCP+ is straight-

forward. When cwnd reaches to the minimum size, and the

sender is required to further decrease its cwnd, DCTCP+ will

regulate the sending time interval to slow down its sending

rate. Furthermore, to avoid fatal packet losses caused by the

synchronized concurrent flows, the sending time interval is

randomized. Despite these additional mechanisms increase

FCT by hundreds of microseconds, comparing to the worse

timeouts, it is worth to slow down sending packets since it

shortens FCT on the whole.

We demonstrate a full implementation of DCTCP+ on our

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

690

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

689

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

689

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

689

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

689

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.78

689

testbed. DCTCP+ needs less than 100 lines change to DCTCP.

The performance of DCTCP+ is evaluated under different

traffic scenarios, compared with DCTCP and TCP. The results

show that in the basic incast experiment, DCTCP+ keeps rel-

atively high good throughput and low completion time. When

the number of concurrent flows increases to several hundreds,

DCTCP+ also outperforms DCTCP in the benchmark traffic

following the statistical features from production clusters.

The rest of the paper is structured as follow. Section II

introduces the background. Section III presents the experi-

mental configurations. Section IV shows the detailed dynamic

behavior of DCTCP under the high fan-in traffic pattern,

explores the radical reasons of DCTCP’s failure. Section V

describes the design and implementation of DCTCP+. The

experimental results and evaluation are presented in Section

VI. Some issues about extension of DCTCP+ are discussed in

Section VII. Section VIII talks about the related work. Finally,

the paper is concluded in Section IX.

II. BACKGROUND

In this section, we briefly introduce DCTCP protocol and

then present two common and significant features of data

center network: the high fan-in traffic pattern and the small

pipeline capacity.

A. Data Center TCP (DCTCP)

DCTCP [1] is proposed to address the shortcomings of

TCP in data center networks. On the switch side, it employs

a simple queue management scheme based on Explicit Con-

gestion Notification (ECN). The switch sets the ECN bit for

all the incoming packets once the queue length exceeds the

reference buffer threshold K. On the source side, compared

with the standard TCP’s responding on ECN mark by halving

its window size, DCTCP adjusts its sending window size

following Equation (1) and (2), where F is the percentage

of packets marked ECN bit which reflects the extent of

congestion at the bottleneck link, g is a fixed parameter.

α← (1− g)α + αF, g ∈ (0, 1) (1)

W ← (1− α

2
)W, W ∈ [2, rwnd] (2)

DCTCP can deal with the congestion well based on the ECN

feedback, and can keep the switch queue length oscillating

around threshold K under normal conditions, which is ben-

eficial for improving burst tolerance and reducing end-to-end

latency. These features are potential for DCTCP to be widely

deployed in data centers comprising of low-cost, shared and

shallow-buffer commodity switches.

B. High Fan-in Traffic Pattern

The high fan-in concurrent flows is a prominent feature for

data centers recently, as the divide-and-conquer computing

paradigm is widely used in the online and data-intensive

applications [2][8]. For example, the user query is usually

partitioned to numerous leaf nodes, and the results are aggre-

gated by parent nodes recursively. Since all leaf nodes receive

queries nearly the same time and respond almost simultane-

ously, it results in a high fan-in traffic in networks. Considering

background traffic containing long flows, which consumes

some available buffer, the buffer is easily overwhelmed to

cause instaneous congestions.

Some measurement results confirm this feature. Yahoo!’s

M45 MapReduce cluster [6][13] is reported each job con-

sists of average 153 Maps and 19 Reduces. Considering the

parallelized data processing of MapReduce framework [14],

hundreds of concurrent flows share the same bottleneck link.

Google web search cluster employs every query operating on

data spanning thousands of servers, where a single query reads

hundreds of megabytes on average [2][7]. Microsoft Bing

project team also claims that the interactive service processing

consists of parallelization across 10s-1000s of servers and

aggregation of responses across networks [8].

C. Small Pipeline Capacity

The small pipeline capacity is another feature for today’s

data center network. We define the Pipeline Capacity as

C ×D+B where C is the bottleneck link capacity, D is the

RTT delay, and B is the size of buffer associated with the

bottleneck link. The RTT of data center network is usually 10s

to 100s of microseconds [13][14-16]. Obviously, the in-flight

capacity, C×D, is quite small compared with the Wide Area

Network where RTT is usually hundreds of milliseconds.

What’s more, low-cost commodity switches with buffer size of

hundreds of kilobytes are widely deployed in data centers. This

is because increasing switch buffer can extend the queuing

delay and also means a substantial cost—switches with 1MB

packet buffering per port may cost as much as $500,000 [15].

Therefore, the tiny C × D plus the shallow B results in the

small Pipeline Capacity for data center network. It makes the
network a low burst tolerance capability, which easily arouse

packet dropping and degrades the transmission performance

in data center networks.

III. EXPERIMENTAL CONFIGURATION

In order to clearly observe the detailed dynamic behavior

of DCTCP facing the high fan-in burst traffic in data center

network with small Pipeline Capacity, we conduct the experi-
ments in our testbed, on which we could control the number of

concurrent flows and monitor the detailed behavior of protocol

stacks. The cluster contains 10 Dell OptiPlex 780 servers,

connected through the NetFPGA-implemented GbE switches.

The ECN-enabled switches owns four 1Gbps ports. The server

is equipped with Intel Celeron Dual-Core 2930MHz CPU,

4GB RAM and 1Gbps NIC with the CentOS 5.5 distribution

installed.

Our topology is a canonical tree-based 2-Tier topology. The

benchmark is referred to the source code 1 [16]. Considering

the large number of concurrent senders in experiments, and

the limited number of servers, we implement a multithreading

version to make each server maintain specific number of

1Available at: https://github.com/amarp/incast.

691690690690690690

� �� �� �� �� ���
�

���

���

���

���

����

�	
����������	���������

��
�
	�
��
	�
���
��
�� ���!

��!

Fig. 1. Goodput of DCTCP and TCP with the increasing number of concurrent
flows

concurrent flows, instead of each server sender opening one

flow. Under this experimental configuration, we redo the same

experiments in [1] for the large number of concurrent flows

and get the similar results. We use tcp_probe kernel module
by modifying Kprobes[17] to monitor the in-kernel variables
of the protocol stack.

IV. PROBLEMS OF DCTCP AND ANALYSIS IN DETAIL

In this section, we introduce the detail about our observation

on DCTCP’s dynamic behavior in high fan-in traffic, present

our analysis about why DCTCP fails in handling this traffic

pattern and figure out the radical reasons of the problems that

provide guidelines towards our design.

A. Throughput collapse for DCTCP under the high fan-in
traffic pattern

We redo the basic incast experiment in [1] on our testbed.

The aggregate server requests 1MB/N bytes from N concur-

rent senders through ECN-enabled switches with the static

128KB buffer per port and threshold K is set to 32KB. Each

receiver responds immediately with the requested data. The

aggregator will wait until it receives all responses, and then

issues another similar requests. The experiment is repeated

1000 times with N varying from 1 to 100.

Figure 1 shows the throughput of DCTCP and TCP versus

the number of concurrent flows. The results are the same

with those in [1]: DCTCP begins to suffer from throughput

collapse when the number of concurrent flows exceeds 35.

TCP undergoes the collapse just exceeding 10. We trace all

the congestion window (cwnd) size evolution and the ECE
flag bit in TCPs headers of all concurrent flows, find some

particular clues when DCTCP suffers from the performance

impairment.

B. DCTCP is incapable of further reducing the sending rate
when cwnd reaches the minimum size

In the above experiment, we make a snapshot of cwnd and

ECE when N equals to 10, 20, 40 and 60 respectively. Under

� � " � # � $ � % �� ��
�

�&�

�&�

�&"

�&�

�&#

�&�

�&$

���'�()*����((�

�
�+
	�
��
,

 ���!
��!

(a) Concurrent Flow Number N = 10

� � " � # � $ � % �� ��
�

�&�

�&�

�&"

�&�

�&#

�&�

�&$

���'�()*����((�

�
�+
	�
��
,

 ���!
��!

(b) Concurrent Flow Number N = 20

� � " � # � $ � % �� ��
�

�&�

�&�

�&"

�&�

�&#

�&�

�&$

���'�()*����((�

�
�+
	�
��
,

 ���!
��!

(c) Concurrent Flow Number N = 40

� � " � # � $ � % �� ��
�

�&�

�&�

�&"

�&�

�&#

�&�

�&$

���'�()*����((�

�
�+
	�
��
,

 ���!
��!

(d) Concurrent Flow Number N = 60

Fig. 2. The frequency distribution of cwnd sizes for DCTCP and TCP when
the number of concurrent flow is 10, 20, 40, 60

the high fan-in traffic pattern, DCTCP is usually unable to

further decrease its sending rate when cwnd reaches the lower

bound while there still receives the congestion information

generated by switches.

Naturely, the window-based congestion control mechanism

has the range and granularity limitation for window size

adjustment. As Equation (1) and 2 show, the window size has

its lower bound value, 2MSS.2 In the experiment, we observed

a higher frequency for DCTCP’s cwnd hitting the lower bound
as the number of concurrent flows increases. Figure 2 shows

the frequency distribution of cwnd sizes. When N = 10, the
cwnd size for DCTCP and TCP mainly distribute from 3 to

8MSS, and < 1% distribute in 2, 9 and 10MSS. However,

when N = 20, 40 and 60 respectively, +60% of DCTCP’s

cwnd size ranges from 1MSS to 2MSS, among which great

majority of cwnd sizes equals to 2MSS (The remaining cwnd
= 1MSS indicates timeouts). For TCP, similar phenomenon

happen as N increases. But compared with DCTCP, TCP is

relatively less sensitive to congestions and lags in control from

the distribution of TCP’s and DCTCP’s cwnd in Figure 2.

Significantly, with the number of flows increasing, the ratio

of timeouts (namely, cwnd=1) increases while the ratio of

cwnd=2 decreases as showed from Figure 2(b), 2(c) to 2(d).

This indicates that the higher fan-in traffic shares the same

bottleneck link, the more risk DCTCP takes to suffer from

timeouts.

In order to further confirm DCTCP’s limitation, we trace

the cwnd and ECE flag bit variation of one flow randomly

selected. If cwnd=2, ECE=1 before sending packets, it

evidently indicates that DCTCP is unable to decrease the

sending rate any more although it is required by ECE. As

2For most Linux kernel distributions, the normal minimum value for cwnd
is 2MSS except the 1MSS for the flow initialization and timeout occurrence.

692691691691691691

����������

	���
����

��

�

�������
� �

�

� � �

�

� � �

�

. . .
. . .

(a) Synchronized N DCTCP flows with the mini-
mum cwnd make buffer overflow

����������

	���
����

��

�

�������
� �

��

�

� � �

�

� � �

�

. . .
. . .

(b) Regulating flows’ sending time interval when
cwnd reaches the minimum

����������

	���
����

��

�

�������
� �

�����	
�� ��

����

�

� � �

�

� � �

�

. . .
. . .

(c) Randomizing flows’ sending time interval
when cwnd reaches the minimum

Fig. 3. Basic idea for DCTCP+

TABLE I
PERCENTAGE FOR ONE CONCURRENT FLOW ENCOUNTERING THE CASE OF

(1) cwnd=2, ECE=1, (2) Timeout AMONG ALL TRANSMISSIONS, (3)
FLOSS-TO AMONG ALL TIMEOUTS, (4) LACK-TO AMONG TIMEOUTS

Flow
Number

cwnd=2, ECE=1 Timeout FLoss-TO LAck-TO

DCTCP DCTCP TCP DCTCP DCTCP

N=20 58.30% 0 0.95% 0 0

N=40 50.16% 1.9% 4.23% 35.23% 64.77%

N=60 10.41% 7.07% 7.18% 76.33% 23.67%

Table I shows, among all the tranmissions, this incapable case

accounts for 58.30% for N = 20, 50.16% for N = 40 and

10.41% for N = 60 in of DCTCP. This not only reflects the

limited congestion control ability for DCTCP based on the

window size under the high fan-in traffic, but also brings the

threat for timeouts as we will elaborate next.

C. Bursts from synchronized flows with small cwnd cause
fatal packet loss leading to severe timeouts

We collect the frequency of the times of timeouts among all

times of transmissions for one flow randomly selected. Table I

shows the increasing percentage of timeouts for both DCTCP

and TCP as the synchronized flow number increases.

Carefully examining the states of protocol stack when

timeout occurs, we find two main categories of timeouts. One

is FLoss-TO [12], which is induced by the full window loss.

The other is LAck-TO [12], which is caused by the insufficient

packets for data-driven recovery, e.g. less than triple duplicate

ACKs received by the sender. These two kinds of timeouts

account for all timeout cases in experiments as Table I shows.

Moreover, the more synchronized flows there are, the more

FLoss-TOs occur.

These two timeouts are both resulted from the fatal packet

losses that synchronized N concurrent flows’ packets overflow

Pipeline Capacity. Let’s make a simple calculation. Suppose

N = 40, Pipeline Capacity C×D+B is 100Gbps×100us+
128KB = 140.5KB. If flow i’s window size w(i, t) = 2MSS,∑N
i=1 w(i, t) = 2 × 1.5 × 40 = 120KB approaches Pipeline

Capacity. If w(i, t) = 3MSS,
∑N
i=1 w(i, t) = 180KB exceeds

Pipeline Capacity. When N = 60, even if w(i, t) = 2MSS,∑N
i=1 w(i, t) = 180KB also exceeds Pipeline Capacity. More

importantly, any packet losses under this condition easily lead

to FLoss-TO and LAck-TO.

From the analysis above, we find the two key factors

responsible for DCTCP’s performance impairment under the

high fan-in traffic. The first is the inability to further decrease

the sending rate when cwnd hits the lower bound in the

face of congestion. The second is the synchronization of the

concurrent flows’ sending makes the fan-in burst exceed the

small pipeline capacity of data center networks, then leading to

packet losses, which causes awful FLoss-TOs and LAck-TOs

directly.

V. DCTCP+ DESIGN AND IMPLEMENTATION

Guided by the above findings, we design DCTCP+ protocol

to support massive concurrent flows. Firstly, we introduce the

basic idea of design DCTCP+.

A. Basic idea for DCTCP+

Our starting point is whether we could introduce some

additional mechanisms into DCTCP+ to eliminate or greatly

alleviate the performance impairments caused by two main

factors. In order to achieve this goal, we consider to solve the

problem in two stages aiming at the key factors respectively.

The first step is to enhance DCTCP so that it can decrease

the sending rate in case of the high fan-in congestion, when its

cwnd reaches to the minimum value and still receives con-

gestion notification. Straightforwardly, we can introduce the

enhancement mechanism to enlarge the sending time interval.

Equivalently, it can slow down the sending rate required by

ECN feedback. In other words, the sender will wait for a

slow_time to inject the next packet into networks instead

of immediate transmission.

Figure 3(a) shows N concurrent DCTCP flows overwhelm

the switch shallow buffer when their cwnds reach the mini-

mum value. Figure 3(b) illustrates our basic idea. When the

sender is aware that it reaches the minimum window size

driven by the regulating law of DCTCP, it begins to delay

packet transmission to regulate the sending time interval. We

believe that it deserves to pause hundreds to thousands of

microseconds to send the next packet. Although it increases

the completion time a little, it is expected to be a worthy

trade-off to avoid the severe timeouts, which otherwise will

introduce hundreds of milliseconds.

The first step would help decrease the sending rate. How-

ever, it does not fix the second problem entirely. If the

massive concurrent flows send packets simultaneously, the

693692692692692692

Fig. 4. State Machine Diagram of DCTCP+

synchronized packets would produce micro burst at the bot-

tleneck link. Therefore, for the problem shown in in Figure

3(b) that bursts from synchronized flows with small cwnd
cause fatal packet loss and lead to severe timeouts, we try

to randomize the sending time of concurrent flows, avoiding

the synchronized bursts as shown in Figure 3(c). During the

experiments in Section VI, we will find this is quite necessary

if DCTCP+ needs to support more concurrent flows. If we

do not desynchronize the sending time interval randomly,

DCTCP+ could only support about 100 concurrent flows well

on our testbed and then performs poorly like DCTCP for more

concurrent flows.

The entire DCTCP+ design is centered around two ideas:

to further decrease the sending rate to avoid the fan-in con-

gestion, and to desynchronize the concurrent flow to alleviate

fan-in bursts.

B. State transition between DCTCP+ and DCTCP

We define three important states during designing of

DCTCP+. In the different states, the sender will be delayed for

different slow_time to send the next packet. These states

are:

State-I DCTCP_NORMAL: represents DCTCP works nor-

mally. In this state, the sender’s cwnd is equal to

or greater than its lower bound.

State-II DCTCP_Time_Inc: represents that cwnd has di-

minished to the minimum value, and meanwhile the

sender is notified to further decrease the sending

rate, induced by the ACKs with ECN marked or

retransmission after the timeout. In this state, the

packet transmission is delayed by slow_time to

decrease the sending rate on average.

State-III DCTCP_Time_Des: represents a recovering state.

If the sender is in DCTCP_Time_Inc state and

receives no more congestion information, the state

machine will transit into DCTCP_Time_Des state.

After the further regulation of DCTCP_Time_Des,

if no congestion feedback is received, the sender

will return to DCTCP from DCTCP+.

The state transitions and the corresponding conditions are

summarized in Figure 4. The transition condition ECE=1
means ACK from the receiver is marked with the ECN tag. The

condition retrans and no retrans stands for whether the
retransmission action indicating the occurrence of timeouts is

triggered or not. Threshold is a time threshold to guarantee

the relatively smooth regulation of the sending rate from

DCTCP_Time_Des to DCTCP_NORMAL.

C. Sending Time Interval Regulation

The sending time interval regulation is critical for each

concurrent flow to quickly converge to proper slow_time.
The regulation law should consider not only to decrease the

whole sending rate of all concurrent flows, but also to avoid

bursts from the synchronized senders. In DCTCP+, we use a

heuristic algorithm to regulate the sending time interval.

The critical variable slow_time is updated fol-

lowing the additive-increase/multiplicative-decrease (AIMD)

rule in DCTCP+. As Algorithm 1 shows, from state

DCTCP_NORMAL to DCTCP_Time_Inc, the slow_time
is increased by one backoff_time_unit from zero, e.g.

100 us is the default for backoff_time_unit. Every

time DCTCP_Time_Inc transits to DCTCP_Time_Inc, the
slow_time is increased by one time unit. The sending rate,

inversely proportional to the sending time interval, is reduced

accordingly. This additive-increase method for slow_time
intends to find a conservative rate for senders based on the

congestion information.

Every time DCTCP_Time_Inc state transfers into

DCTCP_Time_Des, the slow_time is divided by a factor,

e.g. 2, 4. Until slow_time is less than threshold_T, the
state will transit into DCTCP_NORMAL. The corresponding

sending rate is multiplied to rapidly recover to the normal

state. To avoid synchronized bursts, we randomize the sending

time by making time unit backoff_time_unit evenly

distributed for slow_time as shown in Algorithm 1.

What we have to declare is the heuristic algorithm is not

the optimal slow_time regulation. Here, we just provide a

plain heuristic algorithm for the regulation of slow_time
which does work in experiments. Further investigation would

focus on the fine regulation law for slow_time.

D. Implementation

We implement the DCTCP+ on Linux-Kernel-2.6.38.3

through modifying the available DCTCP source code

found in [18]. The implementation of DCTCP+ re-

quires less than 100 lines of code change to DCTCP.

We use ndctcp_status_evolution() function to

maintain the state machine shown in Figure 4, and

change the sending time interval slow_time accord-

ing to Algorithm 1. Once the sender receives one ACK,

ndctcp_status_evolution() will be invoked to check

whether state transition update is required or not. Before

packets entering the tcp_transmit_skb() function, the

694693693693693693

Algorithm 1 Sending time interval regulation

Symbols Descriptions:
backoff time unit: basic time unit for the backoff;
divisor factor: divisor to decrease the long time interval;
isTo<NextState>: procedure to see if the current protocol states meet the
transition conditions in Fig 4;

1: procedure STATUSES EVOLUTION(current state)
2: switch current state do
3: case DCTCP NORMAL
4: if isToDCTCP Time Inc then
5: current state = DCTCP Time Inc
6: slow time = random(backoff time unit)
7: Break
8: end if
9: case DCTCP Time Inc
10: if isToDCTCP Time Inc then
11: slow time+ = random(backoff time unit)
12: Break
13: end if
14: if isToDCTCP Time Des then
15: current state = DCTCP Time Inc
16: slow time/ = divisor factor
17: Break
18: end if
19: case DCTCP Time Des
20: if isToDCTCP Time Inc then
21: current state = DCTCP Time Des
22: slow time+ = random(backoff time unit)
23: Break
24: else if slow time > threshold T then
25: slow time/ = divisor factor
26: else
27: current state = DCTCP NORMAL
28: end if
29: end procedure

current state is checked, and the corresponding slow_time
is delayed through the callback of tcp_transmit_skb()
which is invoked by an high-resolution timer (hrtimer) [19]
to regulate the sending time of flows deliberately.

Here we introduce some guidelines towards parameter set-

ting in DCTCP+. First, we choose to use the baseline RTT
as the backoff time unit. It is advised neither to use the large

time unit since it could reduce the sending rate too much and

lead to bandwidth wastage, nor to use the small time unit

because it could not help relieve the severe congestion caused

by high fan-in traffic. Second, we use the divisor factor 2 to

reduce slow_time to recover from the congestion. Similarly,

the divisor factor is suggested neither to be too big for the

premature recovery from the congestion state to the normal,

nor too conservative for retarding sending rate regulation.

VI. PERFORMANCE EVALUATION

In this section, we verify our design idea and evaluate the

performance among DCTCP+, DCTCP and TCP using some

real benchmarks on our testbed, including the basic incast

experiment without background traffic, the incast experiment

with background traffic and the benchmark traffic pattern from

the production clusters found in [1].

A. Evaluation Methodology

We deployed the full implementation of DCTCP+ on all

servers in experiments. The CPU, memory, or hard disk of

the servers were never the bottleneck in any experiments. The

������ � ������ � ������ �

������ �

�������������������� ����

�������

Fig. 5. Topology of basic incast scenario

topology is shown in Figure 5 which is a canonical tree-based

2-Tier topology. Each switch has a static 128KB shared buffer

in each port. The threshold K of DCTCP is set to 32KB as

recommended in [1]. We focus on the performance comparison

among DCTCP+, DCTCP, and TCP New Reno, and validating

the effectiveness of enhancement mechanisms in DCTCP+.

B. Basic Incast without Background Traffic

Incast traffic [16][20][21] usually involves large number of

concurrent flows, characterized by the high fan-in congestion.

We examine the performance of DCTCP+, DCTCP and TCP

under the incast experiment first.

In the experiment, the aggregator requests 1 MB/N bytes

from N workers. The concurrent flows are established by

multiple threads between the aggregator and the nine servers in

a serially round-robin way. The worker responds immediately

with the requested data. The aggregator will wait until receiv-

ing all the responses and then issue another similar requests

to workers. The experiment is repeated 1000 times for every

N concurrent flows and N varies from 1 to 200.

In order to validate two enhancement mechanisms against

two key problems that DCTCP fails to handle the high fan-

in traffic, we will verify the performance of DCTCP+3 one

by one. First, to examine whether DCTCP+ further decreases

the sending rate when its cwnd reaches the minimum value,

we just regulate the sending time interval slow_time in

DCTCP+ without scattering it to avoid the synchronized burst,

namely only one mechanism is enabled. As shown in Figure

6, the problem of DCTCP+ is overcomed partially. Although

DCTCP+ maintains a higher throughput without timeouts,

synchronized bursts couldn’t be avoided when there are more

concurrent flows. The throughput of DCTCP+ sharply declines

when the concurrent flow number exceeds 100. This tells that

it’s not enough just to decrease the sending rate, because the

window-based flow control is not fine-grained for the send-

ing rate and the aggregation traffic from many simultaneous

senders produces bursts on the bottleneck link.

Then, we implement the completed DCTCP+ considering

the synchronization mechanism flows by randomizing the

3We change the lower bound of cwnd to 1MSS for DCTCP+ for the
smoother change of the sending rate. We also do this for DCTCP for
comparison. Actually it doesn’t improve DCTCP’s performance in the high
fan-in traffic according to the analysis in Section IV.

695694694694694694

� �� �� �� �� ��� ���
�

���

���

���

���

����

�	
����������	���������

��
�
	�
��
	�
���
��
��

 ���!-

 ���!
��!

Fig. 6. Partially implemented DCTCP+ in the
incast experiment

� #� ��� �#� ���
�

���

���

���

���

����

�	
����������	���������

��
�
	�
��
	�
���
��
��

 ���!-

 ���!
��!

Fig. 7. Fully implemented DCTCP+ in the incast
experiment

� �� �� �� �� ��� ���
�

���

���

���

���

����

�	
����������	���������

��
�
	�
��
	�
���
��
��

 ���!-

 ���!
��!

Fig. 8. DCTCP+ compared with the 10ms RTO
DCTCP and TCP in the incast experiment

� �� ��� ���
�

���

���

���

��	

�

����������������������

�
��

��
��
��
�
 �
!�
"�#
��
�$
�
%�
�&
��$
�

'�(�)*

'�(�)
(�)

(a) CDF of queue length when N = 30

� �� ��� ���
�

���

���

���

��	

�

����������������������

�
��

��
��
��
�
 �
!�
"�#
��
�$
�
%�
�&
��$
�

'�(�)*

'�(�)
(�)

(b) CDF of queue length when N = 50

� �� �� �� 	� ��� ��� ���
�

���

���

���

��	

�

��������������������	�

�
��

��
��
��
�
 �
!�
"�#
��
�$
�
%�
�&
��$
�

'�(�)*

'�(�)
(�)

(c) CDF of queue length when N = 80

Fig. 9. CDF of queue length variation on Switch 1 when concurrent flow number N = 30, 50, 80

sending time. Figure 7 confirms that DCTCP+ can support

more than 200 concurrent flows nicely. In normal conditions,

DCTCP+ performs as well as DCTCP when the concurrent

flow number is within 40. Under the high fan-in traffic,

DCTCP+ keeps a high throughput, which fluctuates between

600 and 900Mbps even when the concurrent flows exceeds

200. This provides the advantage for DCTCP+ in aspect of

FCT compared with DCTCP and TCP. DCTCP+ holds the

short FCT ranging from 8ms to 17ms as the concurrent flow

number increases to 200. Both DCTCP and TCP all suffer

from severe timeouts resulting in FCT being more than 200ms.

Besides, due to the relatively large default value of RTO,
i.e. 200ms, which penalizes the performance greatly as proved

in [16], we modify the RTO time to 10ms for DCTCP and

TCP for a fair comparison in the above experiment. Figure 8

shows the throughput for DCTCP+, DCTCP and TCP respec-

tively. The default RTO setting is not modified for DCTCP+,

while it outperforms DCTCP and TCP without timeouts.

Although we could see the improvement in throughput for

DCTCP and TCP by quick retransmissions after timeouts, we

do not recommend to arbitrarily decrease RTO since it will

bring spurious timeouts and other problems [22].

Two details deserve attentions as shown in Figure 7. First,

even when we have decreased the minimum value of cwnd
to 1MSS, DCTCP still suffers from the incast impairment.

Actually, this result accords with our analysis in Section IV,

decreasing the minimum value of cwnd won’t help DCTCP

improve performance. Second, we observe that there is an

obvious decline in throughput for both DCTCP+ and DCTCP

when the concurrent flow number is between 30 and 40.

In fact, DCTCP+ takes actions to decrease the sending rate

during this period. But DCTCP has researched the critical

point of congestion adjustment at that moment.

In experiments, we collect the instant queue length every

100us on Switch 1. Figure 9 shows the cumulative distribution
function (CDF) of the switch queue length for DCTCP+,

DCTCP and TCP. When N = 30, DCTCP+ begins to show a

shorter queue length than DCTCP. We could see the evident

difference in queue length between DCTCP+ and DCTCP

from Figure 9(b) to 9(c). DCTCP+ keeps a much shorter

and stabler queue length than DCTCP and TCP. This proves

DCTCP+ does work in the incast experiment.

C. Incast Congestion with Background Traffic

We do not consider the impact of the background traffic

in the above experiment. To evaluate the performance of

DCTCP+ in the incast experiment mixing with background

traffic, we start two persistent flows to consume the shared

buffer as Figure 10 shows.

Figure 11 and 12 show the good throughput and FCT

versus the number of concurrent flows respectively. Although

background traffic shares the same bottleneck link in Figure

696695695695695695

������ � ������ �

����������

���������� ����

 ���!�����
"����

"�

"�

"#

�������!�� $���

Fig. 10. Incast scenario with background traffic

� #� ��� �#� ���
�

���

���

���

���

����

�	
����������	���������

��
�
	�
��
	�
���
��
��

 ���!-

 ���!
��!

Fig. 11. Good throughput (Mbps) for the incast
scenario with background traffic

� #� ��� �#� ���
�

���

���

���

���

����

�	
����������	���������

��
��
��
�

��
��
)�
��
�)

��
�

��

 ���!-

 ���!
��!

Fig. 12. Flow completion time (ms) with back-
ground traffic

��.� %#�� %%��
�

#

��

�#

��

�#

"�

"#

/
	�
,
��
�

��
��
)�
��
�)

��
�

��

 ���!-

 ���!

"�&�

�#&"
�"&�

�&� "&%

�&$

(a) Query completion time

��.� %#�� %%��
�

#�

���

�#�

���
0.
�1
�
�	
�'
���
��
��
�

��
��
)�
��
�)

��
�

�� ���!-

 ���!

��&� �$&"

��&# ��&�

���&$

�#�&#

(b) Background flow completion time

Fig. 13. The FCT for DCTCP+ and DCTCP under the benchmark traffic

� ��� � ��� � ��� � ��� � ���
�

��

��

��

	�

���

���

���

(����!�

��

��
��
��

��
�
�"
��
��$
�
��
�
�

Fig. 14. Switch 1 queue length every 100us for
DCTCP+ when N = 50

10, we can see that DCTCP+ still outperforms DCTCP and

TCP and keeps almost as good throughput without long

background flows. The apparent gap in FCT can be seen

from Figure 12. Although DCTCP+ experienced hundreds to

thousands milliseconds delay, its FCT is much shorter than

DCTCP and TCP. This is what we mean slowing little quickens

more.

Besides, we collect the average throughput of two DCTCP+

long flows every time transmitting 1GB data. The average

throughput for both long flows is around 400Mbps. DCTCP+

provides better performance isolation between short and long

flows than DCTCP.

D. Benchmark Traffic

We generated the realistic traffic including query, short

messages and background flows, based on statistics from the

production cluster [1]. Query traffic sent to all servers follows

the inter-arrival time distribution in [1] with 2KB responses.

Short messages and background traffic are produced according

to the flow size versus the inter-arrival time distribution from

the measurement result of the production cluster in [1]. We

carry out the experiment for DCTCP+ and DCTCP with both

RTOmin set to be 10ms. Threshold K for the switch buffer

is set to be 32KB and the static shared buffer size is set to

be 128KB for each port of the switch. The traffic generated

consists of 7,000 queries and 7,000 background flows.

Figure 13(a) shows the statistical result of the queries’

FCT for DCTCP+ and DCTCP. DCTCP+ performs better

than DCTCP on the whole. For the mean value, the queries’

FCT for DCTCP+ is 4.1ms with fewer timeouts. However,

the mean queries’ FCT for DCTCP is 13.6ms, indicating

timeout happens at least once in experiments on average after

changing default RTOmin 10ms. For the 95th percentile of the
queries’ FCT for DCTCP+ and DCTCP, it confirms the fact

that adjusting the sending time interval will increase the flow

completion time if no timeout happening. However, for the

99th percentile of FCT, we can see the advantage of DCTCP+

over DCTCP. Flows at the tail-end of the FCT distribution

benefit significantly from DCTCP+ with 16.3ms gain.

Figure 13(b) shows the FCT for the background traffic.

Although there is less than 1ms difference between DCTCP+

and DCTCP for the mean and 95th percentile FCT and 15.2ms

for the 99th percentile FCT, there is no much difference on

the whole. These tiny gaps can be ascribed to the hundreds

to thousands of microseconds delay introduced by DCTCP+.

Nevertheless, it doesn’t bring much negative influence for the

background flow.

Under the benchmark traffic, DCTCP+ could achieve short-

er FCT for the query traffic, avoiding timeouts which put off

the entire DCTCP’s FCT. And the impact from DCTCP+’s

regulation is minor for the background traffic.

697696696696696696

VII. DISCUSSIONS

In this section, we discuss three aspects related to the further

extension of DCTCP+.

The first is about finer backoff time design for DCTCP+.

We could clearly observe the small fluctuation on throughput

for DCTCP+ in Figure 7 and 11. As the number of concurrent

flows increases, the fluctuation is more drastic. This problem

comes from the fact the regulation of DCTCP+ is not much

smooth. The more concurrent flows swarm into the bottleneck

link, the more precise control on sending rate is needed. In

this work, we just provide the algorithm proving that the

design works and performs well. Further finer algorithm about

regulating the sending time interval is appreciated.

The second is the extension of enhancement mechanism

with other transmission control protocols. Although we design

DCTCP+ based on DCTCP, the fact is the idea of enhance-

ment mechanism could be coalesced with other data center

protocols, for example, D2TCP [2], the HULL architecture

[3] and TCP protocol. Protocols with integration of the en-

hancement mechanism are expected to better handle the high

fan-in traffic in data center network.

The third is about the convergence speed of DCTCP+.

Frankly speaking, DCTCP+ is unable to work in the first RTT
round in the high fan-in traffic, because there is no congestion

information back from the receivers. DCTCP+ needs several

cycles of RTT s to enter the enhancement mechanism. Thus,

it’s easy to cause timeouts at the first rounds. Figure 14 shows

when the aggregator requested 4MB data for every one of the

50 concurrent flows, the buffer overflowed in the initial five

rounds. However, fortunately, the statistical flow size for traffic

in data center is tens to hundreds of megabytes [1][7]. It is

enough for DCTCP+ to converge to the stable state. Even for

the query responded with several kilobytes, the situation is

not so bad coupled with the background traffic. For the initial

timeout problem, we think it is hard to avoid just through

the protocol’s congestion control. It is better to rely on some

mechanisms similar to Connection Admission Control for the

historical ATM networks [23].

VIII. RELATED WORK

TCP Pacing: TCP pacing [25-27] is suggested for alleviat-

ing the burst because of the ACK compression. The adjustment

of DCTCP+ to regulate the send time interval is similar to

TCP Pacing. They are all aimed at controlling the send rate

of the senders. However, the primary purpose for pacing is to

smooth the change of the send rate to avoid the bursts of traffic

injected into the network causing network congestion. Pacing

could increase or decrease the send rate. But the adjustment

in DCTCP+ aims to slow down the send rate, to avoid the

overflow of the aggregator layer’s switch buffer due to large

number of concurrent flows, and to avoid packet drops and

timeouts to finish responding the entire requests before the

deadline. What’s more, pacing is not unanimous as Aggarwal

et al. [24] show that the paced flows are negatively impacted

when competing with the non-paced flows since they are

deliberately delayed. For DCTCP+, this problem does not

exist. Firstly, DCTCP+ is based on DCTCP and works well

like DCTCP in the normal network environment. DCTCP+

regulates the send time interval only in the special case when

large number of concurrent flows swarms into the network.

Secondly, data center owns the homogeneity trait. All the

servers with DCTCP+ receive the request from the aggregator

and act almost in concert with each other without competition.

Transport Protocols in Datacenters: Standard TCP has

aroused many problems in data centers [16][20]. The large

number of concurrent flows is common with the partition

aggregate application pattern which could cause a severe

decline in network throughput. What’s more, the throughput-

sensitive long flows combined with the delay sensitive short

flows coexist in the data center network. Long flows hurt the

short flows since long flows drive queues to loss under the

control of TCP protocol.

Motivated by these problems, recent proposals focus on

the design of novel congestion control protocols to address

the problems [25]. DCTCP employs the Explicit Congestion

Notification mechanism to control the queue length within a

small value in order to reduce the latency for short flows,

maintain high throughput for long flows, and provide certain

burst tolerance ability. Since DCTCP only decreases latency

for short flows without providing differentiated services for

flows with different delay requirement, D2TCP extends the

window evolution function of DCTCP. The flows with smaller

remaining delay will obtain higher rates. In D3 [26], end hosts

compute the desired rate for each latency-sensitive flow based

on the flow size and deadline, convey the computed rates to

the switch. The switches then allocate the corresponding link

rates to each flow based on the collected rate value. These

protocols attempt to control the flow rate according to the

delay information, while some other protocols like PDQ [27]

reduce the latency for delay-sensitive flows through priority

scheduling at the switches. These transport protocols in data

center are all aimed at: (1) low latency for the latency-sentitive

flows; (2) high burst tolerance; (3) high utilization for long

flows.

IX. CONCLUSION

In this paper, we propose DCTCP+ to enhance DCTCP

under the high fan-in traffic pattern. Our work is motivated by

the fact DCTCP fails to handle the congestion resulting from

high fan-in traffic. Although DCTCP has been recognized for

its effectiveness in algorithm and simplicity in deployment,

this shortcoming will make DCTCP suffer from severe perfor-

mance impairment in some real production clusters, especially

those employing divide-and-conquer computing paradigm.

We trace and analyse DCTCP’s dynamic behavior at senders

in real experiments, reveal two radical reasons for DCTCP’s

failure under the high fan-in concurrent traffic: (1) DCTCP is

unable to further decrease the sending rate when cwnd has

been decreased to the minimum value ; (2) The synchronized

bursts from the concurrent senders make FLoss-TOs and

LAck-TOs. We enhance DCTCP through regulating sending

698697697697697697

time interval to decrease the sending rate and desynchronizing

sending time to avoid the synchronized bursts.

DCTCP+ shows significant improvement in the high fan-

in traffic. On the one side, DCTCP+ inherits good perfor-

mance of DCTCP for low latency, high burst tolerance, high

utilization for long flows. On the other side, DCTCP+ keeps

the lower switch buffer occupancy, higher throughput, and

shorter FCT when the number of concurrent flows increases to

hundreds. It performs better for the short concurrent queries in

the benchmark traffic, and keeps the same good performance

for the background traffic.

X. ACKNOWLEDGMENT

The authors gratefully acknowledge the anonymous review-

ers for their constructive comments. This work is supported

in part by National Basic Research Program of China (973

Program) under Grant No. 2012CB315803, and National Nat-

ural Science Foundation of China (NSFC) under Grant No.

61225011

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” ser.
SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[2] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp.
115–126, Aug. 2012.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low
latency in the data center,” ser. NSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 19–19.

[4] R. S. M. Tüxen and G. V. Neville-Neil, “An investigation into data cen-
ter congestion control with ecn,” http://www.bsdcan.org/2011/schedule/
events/242.en.html, 2011.

[5] T. Maurer, “Windows server 2012: Datacenter tcp (dctcp),” http://www.
thomasmaurer.ch/2012/07/windows-server-2012-datacenter-tcp-dctcp/,
Jul. 2012.

[6] Yahoo!, ““m45 supercomputing project”,” http://research.yahoo.com/
node/1884, 2009.

[7] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The google
cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28, 2003.

[8] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan,
“Speeding up distributed request-response workflows,” SIGCOMM Com-
put. Commun. Rev., vol. 43, no. 4, pp. 219–230, Aug. 2013.

[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” ser. IMC ’10, New York, NY, USA, 2010,
pp. 267–280.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” ser. IMC ’09.
New York, NY, USA: ACM, 2009, pp. 202–208.

[11] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP incast
in data center networks,” in IEEE INFOCOM, 2011, pp. 1377–1385.

[12] J. Zhang, F. Ren, L. Tang, and C. Lin, “Taming tcp incast throughput
collapse in data center networks,” in Network Protocols (ICNP), 2013
21st IEEE International Conference on, Oct 2013, pp. 1–10.

[13] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production mapreduce cluster,” in Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, 2010, pp. 94–103.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[15] A. P. Vijay Vasudevan, E. K. Hiral Shah, G. R. G. David G. Andersen,
and G. A. Gibson, “A (in)cast of thousands: Scaling datacenter tcp
to kiloservers and gigabits,” Technical Report CMUPDL-09-101, Feb.
2009.

[16] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained tcp retransmissions for datacenter communication,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, 2009.

[17] http://sourceware.org/systemtap/kprobes/.
[18] “Data center tcp,” http://www.http://simula.stanford.edu/∼alizade/Site/

DCTCP.html, Jul. 2012.
[19] http://www.ibm.com/developerworks/library/l-timers-list/.
[20] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-

derstanding tcp incast throughput collapse in datacenter networks,”
in Proceedings of the 1st ACM workshop on Research on enterprise
networking, ser. WREN ’09, New York, NY, USA, 2009, pp. 73–82.

[21] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis of
tcp throughput collapse in cluster-based storage systems,” ser. FAST’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 12:1–12:14.

[22] L. Cheng, C.-L. Wang, and F. Lau, “Pvtcp: Towards practical and
effective congestion control in virtualized datacenters,” in Network
Protocols (ICNP), 2013 21st IEEE International Conference on, Oct
2013, pp. 1–10.

[23] H. G. Perros and K. M. Elsayed, “Call admission control schemes: a
review,” Comm. Mag., vol. 34, no. 11, pp. 82–91, Nov. 1996.

[24] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of tcp pacing,” in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3, 2000, pp. 1157–1165 vol.3.

[25] J. Zhang, F. Ren, and C. Lin, “Survey on transport control in data center
networks,” Network, IEEE, vol. 27, no. 4, pp. 22–26, 2013.

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: meeting deadlines in datacenter networks,” ser. SIGCOMM
’11. New York, NY, USA: ACM, 2011, pp. 50–61.

[27] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ser. SIGCOMM ’12. New York, NY, USA:
ACM, 2012, pp. 127–138.

699698698698698698

