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Abstract-Recently, TCP incast problem attracts increasing 
attention since the receiver suffers drastic goodput drop when it 
simultaneously strips data over multiple servers. Lots of attempts 
have been made to address the problem through experiments and 
simulations. However, to the best of our knowledge, few solutions 
can solve it fundamentally at low cost. In this paper, a good put 
model of TCP ineast is built to understand why good put collapse 
occurs. We conclude that TCP incast goodput deterioration is 
mainly eaused by two types of timeouts, one happens at the tail 
of a data block and dominates the good put when the number of 
senders is small, while the other one at the head of a data block 
and governs the goodput when the number of senders is large. 
The proposed model describes the causes of these two types of 
timeouts which are related to the incast communication pattern, 
block size, bottleneck buffer and so on. We validate the proposed 
model by comparing with simulation data, finding that it can 
well characterize the features of TCP incast. We also discuss the 
impact of most parameters on the goodput of TCP ineast. 

Index Terms-Data Center Networks, TCP incast, Modeling, 
Goodput 

I. INTRODUCTION 

TCP incast has risen to be a critical problem recently in data 
center networks due to its catastrophic goodput collapse [1]­
[3]. Incast, a communication pattern, was first termed by Nagle 
et al. in [4]. In incast communication pattern, multiple senders 
concurrently transmit data blocks to a single receiver, and any 
sender can not send another data block until all the senders 
finish transmitting the current data block. When the number 
of senders increases, the goodput of the receiver will become 
lower than the capacity of the bottleneck link in one or even 
two orders of magnitudes. The incast communication pattern 
exists in many popular applications, such as cluster-based 
storage systems [4]-[6], web research [7] and MapReduce [8]. 
To avoid the performance deterioration of TCP incast, lots of 
attempts have been made to find the causes of TCP incast and 
the methods to solve it [1]-[3]. 

The existing approaches to solve TCP incast problem can 
be classified into four categories. First, avoiding timeout in 
TCP [1], [3]. Experiment and simulation results show that too 
many TimeOut (TO) periods in TCP incast lead to goodput 
collapse. Therefore, several trials have been made to avoid 
TOs. For instance, reducing duplicate ACK threshold of en­
tering Fast Retransmission (FR) from 3 to 1, disabling slow 
start phase, and trying different TCP versions. However, most 
of these methods are ineffective. Second, reducing minimum 
Retransmission Timeout (RTOmin) [2]. RTOmin typically 

equals to 0.2s in TCP, which will result in a big waste of 
bandwidth in data center networks where the link capacity 
is quite high. Hence, Vasudevan et al. suggested reducing 
RTOmin to microsecond-granularity to reduce the capacity 
waste during TO periods. This method not only needs to 
modify the Linux kernel timer into the higher resolution, 
which is difficult to be implemented, but also is not very 
safe in the networks with larger Round Trip Time (RTT). 
More importantly, if optical fibre, whose current maximum 
rate is 12.8 Tbps, becomes popular in data center networks in 
future [9], even if microsecond order RTOmin will still elicit 
unignorable capacity loss. Therefore, reducing RTOmin tem­
porarily mitigates TCP incast, but not solves it fundamentally. 
Third, replacing TCP. The engineers in Facebook have adopted 
this crude method to avoid TCP incast [7]. They employed 
UDP as transport layer protocol and endowed the application 
layer the responsibility of flow control. Yet TCP is so popular 
that replacing it will cost too much. Fourth, employing other 
mechanisms except from modifying TCP. A. Phanishayee et 
al. proposed using Ethernet Flow Control to solve TCP incast 
[1]. However, it can not work well if multiple switches exist 
between the senders and the receiver due to head of block. 

In sum, sorts of solutions to TCP incast have been proposed. 
Unfortunately, most of them have various limitations. To 
substantially solve TCP incast at low lost, firstly we need to 
thoroughly understand why it happens. In this paper, a goodput 
model of TCP incast is built to understand TCP incast in 
depth. Although there are many literatures on TCP modeling 
[10]-[14], our modeling is different in three aspects: (1) 
The application in our model exhibits incast communication 
pattern. Yet, existing TCP models usually assume that the 
application layer always passes enough data to the transport 
layer. (2) TCP incast model describes the overall goodput of 
the bottleneck link which contains multiple flows, while most 
of existing TCP models focus on the throughput of only one 
flow. (3) The RTT in previous work is generally assumed to 
be constant since it is difficult to be accurately computed in a 
network with complicated and unknown topology. However, in 
TCP incast environment, more precise RTT model is needed 
to characterize the causes of goodput collapse. 

In our TCP incast model, we summarize that the goodput 
collapse in TCP incast is mainly caused by two kinds of TOs. 

• Block Tail TimeOut (BTTO): It is caused by the special 
incast communication pattern. Since each sender can not 
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get the next block data from the application layer until 
all the senders finish transmitting the current block, if 
one of the last three (Assume three duplicate ACKs are 
needed to trigger FR.) packets in current block is dropped, 
then there will not enough ACKs to trigger FR, timeout 
naturally occurs. 

• Block Head TimeOut (BHTO): BHTO is apt to happen 
when the number of senders becomes larger. During 
transmitting a block, some of the senders will finish 
earlier due to TCP unfairness in small timescale. Then 
they will wait for the others to finish without taking any 
bandwidth. Therefore the other flows will finish their 
blocks using more capacity in average, which results 
in higher window sizes when they finish the current 
block. At the beginning of the next block, all the senders 
inject their whole windows to the small Ethernet buffer, 
which usually causes lots of dropped packets. If a flow 
unfortunately losses its whole window, which can easily 
happen since the window of each flow becomes smaller 
as N increases, then it will enter a TO period. 

Investigating the causes of these two kinds of TOs in depth 
is beneficial to develop an effective and simple solution to 
avoid goodput collapse of TCP inast. 

The remainder of the paper is organized as follows. We first 
introduce the main assumptions and notations in Section II. 
Subsequently, the goodput of TCP incast is modeled in Section 
III in detail. In Section IV, the model results are compared with 
the simulation results and the impact of different parameters 
upon TCP goodput is analyzed. Finally, the paper is concluded 
in Section V. 

II. ASSUMPTIONS AND NOTATIONS 

A. Assumptions 

1) T CP lncast Scenario: Assume that only packets of the 
synchronized data blocks are transmitted through the bottle­
neck link, and the bottleneck buffer employs Drop Tail queue 
management scheme. Also, we assume that packets will be 
lost only when the bottleneck buffer overflows, namely, the 
packets will not be dropped due to other reasons, such as 
link failure. Assume that all the windows evolutions of the 
flows are synchronized when the number of senders is small. 
Besides, if the number of senders is larger than the bottleneck 
buffer size in unit of packets, then even if each sender transmits 
one packet, the bottleneck buffer will be overwhelmed, so we 
assume the number of senders is smaller than the buffer size. 

2) T CP: Assume that the TCP version is NewReno, which 
is popular in practice. The receiver sends one ACK for 
each received packet and ACKs are not lost. The threshold 
of duplicate ACKs for triggering FR phase is 3. Since the 
unabiding slow start process imposes a negligible impact on 
TCP througput, it is igonred in our modeling. 

B. Notations 

Before defining the notations, we first introduce a concept 
called round. The first round starts from a Congestion Avoid­
ance (CA) period and lasts one RTT. The after round starts 
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Figure 1. A scenario of TCP incast, where multiple senders concurrently 
transmit data blocks to a single receiver. 

TABLE I 
KEY NOTATIONS IN OUR MODEL 

Not. Description 
W m Window size when some of the N flows begin to drop packets 
Wn Expected maximum window size 
WI Advertised window size of the receiver 
D Propagation delay between each sender and the receiver 
TC Expected duration of a CA period with total N flows 
Y� Expected number of packets successfully transmitted in a CA period 
Nm The number of flows which lost packets when window size is Wm 
y B The block size in unit of packets 
\* Expected number of successfully sent packets in a CA+FR period 
TN Expected duration of a CA+FR period 
N* Critical point between BHTO dominating goodput and BTTO doing 
G Goodput of the receiver without advertised window limitation 
GI Goodput with window limitation 

from the end of the last round and lasts one RTT. A CA period 
ends with the next round after some packets being dropped. If 
the dropped packets are detected by the sender through three 
duplicate ACKs, then a FR period will be entered. Else if 
through a fired retransmission timer, then a TO period occurs. 

A scenario of TCP incast is shown in Figure 1. N senders 
transmit data blocks to a single receiver. The bottleneck 
bandwidth is C packets per second. The bottleneck buffer 
size is B packets. Each packet has the same payload Sp Bytes. 
Considering a CA period, let Wi be the window size of a flow 
in round i whose duration is Ri. Qi denotes the queue length 
of the bottleneck buffer at the end of round i. The other key 
notations are summarized in Table I for the sake of terseness. 

III. MODELING GOOD PUT OF TCP INCAST 

The goodput of TCP NewReno [15] in the Incast environ­
ment will be modeled in this section. As aforementioned in 
Section I, two types of TOs lead to TCP good put drop. We 
will first show them in Figures 2 and 3 which are plotted based 
on the results of simulations conducted on the ns-2 platform. 

Figure 2 shows the scenario where BTTO happens. 8 
senders transmit synchronized data block to the same receiver. 
The figure plots the window evolution of two senders among 
them. A pentagram plotted at (t , 20) represents that a block 
finishes at time t. The big X represents a retransmission 
timer is fired. The advertised window size of the receiver 
is set to 1000 packets, which is large enough that it has 
no impact on the sending window evolution. We can see 
that at about time t = 0.79s, sender 1 finishes Block 10 
and then the window size does not vary. While sender 2 
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Figure 2. The scenario where BTTO happens. N = 8 senders concurrently 
transmit packets to the same receiver. The packet size Sp = 1KB, bottleneck 
bandwidth C = 1Gbps=12.5pkts, buffer B = 64packets, synchronized block 
Sb = 1024KB. The advertised window of the receiver is set to 1000 packets. 
We can see that as long as one flow enters a TO period at the end of a block, 
the other flow will also undergo a TO period. 
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Figure 3. The scenario where BHTO happens. The main parameters of this 
scenario are: N = 32 , Sp = 1K B, B = 64 , Sb = 256K B, C = 12.5pkts. 
The window evolutions of sender 1, 5, 6 are plotted to illustrate BHTO. 

suffers a TO period before finishing Block 10 during time 
about (0.79 "" 0.98)s. By observing the congestion window 
evolution of TCP 2, we find that the penultimate packet of 
Block 10 of sender 2 was dropped, although the last packet 
of Block 10 was successfully transmitted, only one duplicate 
ACK was received by sender 2. What's more, according to the 
incast communication pattern, the packets of Block 11 will not 
be injected into the transport layer from the application layer 
until all senders finish Block 10. Therefore, sender 2 can only 
wait until the retransmission timer fires at about time 0.98s, 
namely, a timeout event happens. Then sender 2 retransmits 
the dropped packet, and then Block 10 is finished. With respect 
to sender 1, although it finishes Block 10 much earlier than 
sender 2, it can not get the data of Block 11 immediately since 
sender 2 does not finish Block 10 yet. Hence, it also waits until 
sender 2 finishes Block 10. The bandwidth is wasted during 

0.79"" 0.98s, which deteriorates the goodput. While at about 
1.25s, sender 1 delays finishing Block 14 due to the same kind 
of timeout and therefore also degrades good put. 

Figure 3 illustrates the situation where BHTO happens. 
N = 32 flows concurrently send packets to the same receiver. 
The advertised window size of the receiver is also set to 
1000 packets. We plot three of the 32 flows to illustrate the 
behavior of BHTO. The pentagram represents that a block 
is finished. At time 0.325s, all the senders begin to transmit 
Block 2. We can see that sender 6 finishes Block 2 at about 
0.35s. Unfortunately, sender 1 and 5 do not receive any ACKs 
and thus their windows do not change. Through tracking the 
simulation data, we can find that both sender 1 and 5 lose all 
packets sent in their first windows at the beginning of Block 
2 and thus no new and duplicate ACKs are fed back to the 
sender. Therefore, their retransmission timers fire at about time 
0.52s. And at 0.56s, both of them finish Block 2. It can be 
inferred that all the other flows also finish Block 2 before 0.56s 
since the transmitting of Block 3 begins at this moment. With 
respect to Block 3, all the three senders luckily finish their 3rd 
Block soon without undergoing TO periods. However, they do 
not continue to transmit Block 4 at once, which implies that 
some other flows delay finishing the transmission of Block 3. 

Through investigating numerous simulation data, we find 
that BTTO dominates TCP goodput when N is small while 
BHTO does when N is large. Let N*(l :::; N* :::; N) denote 
the critical value between these two situations. We will firstly 
model the goodput when N is small where BTTO is the main 
factor of degrading TCP performance. Subsequently, N* will 
be computed and the goodput when N is large where BHTO 
significantly deteriorates TCP goodput will be modeled . 

A. Goodput As N < N* 
1) Dynamics of Queue Length: Considering a CA period, 

during the i-th round, N senders transmit data to one receiver. 
Then NWi packets will be injected into the bottleneck buffer, 
and C Ri packets will be served by the bottleneck link. Thus, 
we can obtain Qi, the number of packets in the queue at the 
end of the i-th round, as follows. 

Qi = min{(Qi_l + N x Wi - ex Ri)+, B} (1) 

a+ equals to a if a > 0, else equals to O. 
2) Relationship Between R7T and Queue Length: Assume 

that the queue is FIFO and the propagation delay between each 
source to the destination is a constant value D. As a rough 
approximation, Ri is the sum of the propagation delay and the 
queuing delay as follows: 

Ri = JE(D + 
Qi-l + ¢) (2) 

C 
where ¢ is a stochastic variable which models the possible 
longer queuing delay of the transmitted packets than Q�l in 
round i. Clearly, the first packet transmitted in round i will 
undergo Q�l queuing delay since the queue length at the end 
of round (i -1) is Qi-l. However, the afterwards packets will 
suffer longer queuing delay if the rate of the arrival traffic is 
larger than that of the departure traffic. 
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Figure 4. Congestion window evolution during a CA period 

3) Number of Packets Successfully Transmitted in a CA 
Period: Figure 4 illustrates the congestion window evolution 
in a CA period. The window size increases by 1 in each 
round i(i > 1) until some packets are dropped at round n. 
Rounds (1 rv n + 1) form a CA period. Let Wn be the 
maximum congestion window size in a CA period. d n packets 
will be lost when the window size becomes Wn. In the last 
round, f3n packets will be transmitted. Therefore, the number 
of successfully transmitted packets Y n in a CA period is 

(3) 
Wn where Sn = Lj�o(� + j) = �(Wn)2 + %Wn. 

Now compute the maximum window size Wn. According 
to Eq. (I) and (2), we can infer 

Qi = min{(NWi -CD -¢)+, B} (4) 

In CA phase, the difference between Qi and Qi-I is 
about N according to Eq. (4). The first packet in round i 
suffers QC' delay, and the last packet in round i suffers 
�i = Qi-!; +N delay. Since the arrival rate and departure rate 
are both constant, we can infer that IE(¢) = �. If Qi > B ,  
i. e. , Wi > CD+;:+!f, some packets will be dropped. Let 

W _ lCD+B 1J m- N +2 +1 (5) 

In the m-th round, approximately Nm = NWm -lCD + 
� + BJ packets will be dropped. Obviously, 1 � Nm � N. 
Since the windows evolutions of all the flows are synchronized 
when N is small, their packets will be fairly dropped. So we 
can infer that about Nm flows will lose one packet each. While 
the window of the other (N -Nm) flows will increase to 
Wm + 1.  Assume that each of the (N -Nm) flows will lose 
one packet when their window sizes are W m + 1.  Therefore, 
we can get the maximum window size in a CA period 

W _ {Wm n - Wm + 1 
with probability lj;;' 
with probability (1 -!it ) (6) 

Hence, the expected number of packets successfully trans­
mitted by one of N flows in a CA period, Yfj, is 

(7) 

Block h·1 Block h 

... rro···�····i···i·"·i··r·"I···i"·(··"iiijj 

W'"OOw -;:;/'" 
D Successful packet 
• Lost packet 
o Nonnal ACK 
EB Duplicate ACK 

Timeout 

Figure 5. The scenario where a BTTO happens 

Time 

Assume f3i uniformly distributes between 1 and Wi, then 
its expectation IE(f3i) = �i. Based on the analysis above, we 
have dm = dm+1 = 1.  Hence, from Eq. (3) and (7), we can 
obtain that 

C (lNm YN =IE N (Sm + f3m -dm) 

+ (1 -� )(Sm+1 + f3m+1 - dm+d J) (8) 

=l�(W)2+2W +�-(�W + 13)NmJ 8 m m 8 4 m 8 N 
4) Duration of a CA Period: Assume Qi-l > 0(1 � i � 

n) , namely, there are backlog in the buffer during CA phases. 
Combining Eq. (2) and (4), we have 

R _ NWi-1 ,- C (9) 

Since WI = �n, according to the window regulation law in 
slow start phases, the window size Wo before the first round 
should be �n. Thus, the duration Tn of a CA period with the 
maximum window size Wn is as follows: 

n+l N 3 Tn = L Ri = C (-S(Wn)2 + Wn) (10) 
i=l 

Similar to the analysis of computing the number of the 
successfully transmitted packets Yfj in a CA period, the 
expectation of the duration TfJ of a CA period is 

C Nm Nm TN = N Tm + (1 - N )Tm+l 
= N (�(W)2 �W 1 1  _ (�W �)Nm) C 8 m + 4 m+ 8 4 m+ 8 N 

(11) 

5) Probability of Block Tail Timeout (BTTO): Figure 5 
illustrates when timeout events happen at the tail of blocks. 
As long as any one of the last three packets in a block is lost, 
then a timeout event will appear due to inadequate ACKs for 
triggering FR. As shown in Figure 5, the third packet from 
the end of Block h is lost, then even if the last two packets of 
Block h are successfully transmitted, the sender can receive 
only two duplicate ACKs, which insufficiently triggers a FR 
procedure. Then, when the retransmission timer fires, a timeout 
event occurs. We refer to this type of TO as BTTO. Next, the 
probability of this event occurrence is deduced. 
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The number of packets successfully transmitted by a flow 
during a CA period is Yfj. The number of packets that a block 
contains, denoted by Y B, is Y B = I f-l, where Sb, Sp are 

p 
the sizes of a block and a packet, respectively. If a TO period 
appears after k CA periods, then at least one lost packet in 
the k-th CA period is one of the last three packets in a block, 
namely 

kYfj -a = hyB - fJ, k and h are integers (12) 

where a, a stochastic variable, is the number of packets 
successfully transmitted after a lost packet in the k-th CA 
period. If a packet is dropped in round n, then a = Wn - l. 
Based on the model of the maximum window size Wn defined 
in Eq. (6), we have 

with probability � 
(13) 

with probability (1 - �) 

If (k Yfj-a) is just one of the last three packets in the h-th 
Block, then a TO period will appear. hyB - fJ(fJ E {a, 1, 2}) 
models one of the last three packet in the h-th Block. 

Denote y(x) = min{klkYfj-hyB = x }. For a specific a 
value and a flow f, the number of CA periods between two 
successive TO periods is 

k! = min{y(a), y(a -1) , y(a -2)} (14) 

Now consider N flows. If at least one of the N flows enters 
a BTTO period, the other flows will also wait for a period 
which almost equals to the BTTO period even if they have 
successfully transmitted Block h (Figure 2). This is because 
they can not get the next block data from the application layer. 
Therefore, the probability of the BTTO period of a flow is the 
minimum probability of BTTO of the N flows. 

Let km in  be the number of CA periods between two 
successive TO periods when there are total N flows. Define 

if ktv=-l < ktv= 
else 

with probability 1 -(Pr[a = a 2])N 
with probability (Pr[a = a 2])N 

Thus, the expectation of km in  is 
2 

lE(km in) = I>!iPr[a = ad i=l 

(15) 

(16) 

(17) 

Hence, the probability of entering a TO period from a CA 
period is 

(18) 

Now compute the duration of a TO period TO. A TO period 
possibly contains several timeouts and ends with a successfully 
retransmitted packet. In our model, the window evolution of all 
the flows can be assumed to be synchronized when N is small, 

and the packets will only be dropped when the bottleneck 
buffer overflows, so the retransmitted packet after the first 
timeout in a TO period will be successfully transmitted if 
N < B since the windows of all the flows start from 1 
after a timeout. Let To denote the duration of the first timeout 
duration, which usually equals to RTOm in  since the RTT of 
data center networks is quite small. The duration of a TO 
period equals to the first timeout duration, namely, TO = To. 

6) Goodput: When N < N*, at the end of each CA period, 
a TO period happens with the probability pO. Thus, TCP 
goodput G1 as N < N* is calculated as follows: 

yC 
G1 = N TlJ + �OTOSp 

NSpliW;, + 2Wm + i -(�Wm + 1:)� J 
� (iW,; + � Wm + 181 -(�Wm + 181 )� ) + pOTo 

(19) 
Remarks: If there are only CA periods, then according 

to the expression of yfj and TlJ, TCP goodput of all the 
N senders approximately equals to C no matter what values 
N, B, Sb take. Therefore, the probability of TO periods, pO, 
is the main factor of degrading goodput. pO is decided by 
whether the lost packet is one of the last three packets in a 
block, which has negative correlation to the Least Common 
Multiple of yB and yfj , i. e. ,  LCM(yB, Yfj). Thereby, larger 
block size yB decreases pO and thus improves goodput G1. 
B. Goodput As N > N* 

1) Calculation of N*: By observing simulation results, we 
find that when N becomes relatively large, most TO periods 
happen at the beginning of blocks. While few TO periods 
happen in the subsequent rounds. This is because some flows 
will have larger window sizes at the end of current block if 
the other flows finish their blocks earlier. Besides, each flow 
injects all the packets into networks according to its window 
size at a quite short interval at the start of the next block. If 
these packets can not be accommodated by the buffer, some 
of them will be dropped. A unlucky flow, which unfortunately 
loses all the packets in its window, will enter a TO period. 
While in the subsequent rounds, the congestion windows are 
regulated by CA procedure. Only one packet is transmitted 
after receiving an ACK. Hence, there are less traffic burst. All 
the flows lose packet more fairly than that at the beginning of 
a data block transmission. And the flows will timely response 
to packet droppings and thus few timeout events appear due 
to full window losses. We refer to the TO periods which occur 
at the start of blocks as Block Head TimeOut (BHTO). 

In reality, the two types of TO periods, i. e. , BTTO and 
BHTO, likely happen when N equals to some values. Next 
the critical point N* is computed. If N* senders transmit data 
to the same client, then in average one flow will suffer a BHTO 
period in each block. When N < N*, BTTOs are dominative, 
while when N 2: N*, BHTOs are significant. 

To determine whether a flow enters a TO period at the 
beginning of Block b, we first compute the number of lost 
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Figure 6. The behavior of the packets in the first windows of all the flows at 
the beginning of Block b. 

packets Db at the first round of its transmission. Let Ab 
be the expected summation of the first windows of all the 
flows at the start of Block b. If all the windows of the N 
flows vary synchronously, then the windows of all the flows 
uniformly distribute between ";n and Wn. While the system 
can accommodate about NWn packets. Hence, in theory few 
packets will be lost at the start of Block b. However, simulation 
results tell that when N becomes large, the asynchronism 
of the windows evolutions can not be ignored. As stated in 
Section I1I-A3, Nm flows lose packets when their congestion 
window sizes equal to W m while the window of the other 
(N - Nm) flows continue to increase. Hence, approximate 
(N -Nm) flows will finish transmitting Block (b -1) earlier 
than the other Nm flows. Then the Nm flows will compete 
for the bandwidth of the bottleneck link to transmit their 
remaining (b -1 )-th Blocks. Therefore, at the start of Block b, 
the windows of the (N -Nm) flows take values between ";= 
and W m, while the windows of the other Nm flows uniformly 

wN= N distribute between � and W m =. Let 

(20) 

Hence, we can obtain that 
3 3 Ab = (N - Nm) x 4Wm + Nm x 4W�= (21) 

The number of dropped packets Db at the beginning of 
Block b is the difference between the arrival and the summa­
tion of departure plus backlog in the buffer, namely 

Db=Ab- (TC +B),O<T)<l (22) 

where T is the maximum time spent by the senders injecting 
the packets in their first windows. Since W�= � Wm, and 
we assume the capacity of the link between each sender and 
the intermediate switch is C pkts, the maximum time taken 

wN". by the senders is T = C . 
Next compute the number of flows suffering a TO at the 

start of Block b. Assume that the arrival rate to the bottleneck 
buffer, denoted by r, is constant. As shown in Figure 6, if all 
the flows totally spend time t(Ab)1 injecting their first win­
dows to the network, then during time t(h)(t(Il) < t(Ab)), 

't(x) represents the time taken by transmitting x packets, i.e., t(x) = �. 

no packets will be dropped since h = B+01, where 01 is the 
number of packets served by the bottleneck link during t(h). 
However, some packets could be lost if the arrival rate is larger 
than the capacity of the link during t(Iz). The probability Pt 
that a flow starts during t(I2) is 

P, _ t(I2) _ rt(I2) _ Iz t 
- t(Ab) - rt(Ab) - Ab 

Therefore, the expected number of flows Nt which starts 
during t(I2) is 

12 Nt = N x P t = N x 
Ab 

(23) 

All the lost packets Db are dropped during t(I2). Thus, the 
packet loss probability Pp is Pp = f;. Then the probability 
Pw that all the packets of a window W are dropped is 

(24) 

Since the link capacity is constant, the number of departure 
packets during t(h) is 01 = TC X �. Therefore, we can 
obtain that II = B+TCX �'b' Clearly Ab = h +12, Therefore, 

BAb 
12 = Ab -

A C 
(25) 

b-T 
Combining Eq. (23)-(25), we can obtain that the expected 

number of flows entering TO period after the first round is 

NO = Nt x (Pp)W 

B Db -= N(l -
A C

) x ( BA )
W 

b -T Ab - __ b_ Ab-TC 

here TV = (1-N".) x Q W + N". X Q WN". is the expectation N 4 m N 4 m 
of the first window sizes of each flow. 

The minimum N, which enables NO = 1, is N*. 

2) Goodput: When N = N*, in average one flow will enter 
TO at the beginning of each block. And when N > N*, we 
can infer that in average (N* -1) lucky flows can transmit a 
block without undergoing any TOs, and the other (N -N*+l) 
flows will enter a TO period. Assume the (N* -1) lucky flows 
can finish their blocks during this TO period. Then, after the 
TO period, the other (N - N* + 1) flows compete for the 
bandwidth to transmit packets. All of their windows start from 
1, and they transmit a packet only after receiving a ACK. They 
can relatively fairly use the bandwidth of the bottleneck link 
without full window losses. But their maximum window sizes 
are very small when N is large, the FR periods are so frequent 
that the corresponding time can not be ignored. 

Let TF denote a CA period plus the subsequent FR period. 
Similar to the analysis as N < N*, we need to compute the 
number of packets successfully transmitted in a TF period 
by one of the (N - N* + 1) unlucky flows, Y%-N*+I' and 
the duration of a TF period, TJ:;-N*+I' NewReno will enter 
into FR after receiving three duplicate ACKs. If the current 
window is W, d packets are dropped, then the congestion 
window is (� + W - d) since each duplicate ACK increases 
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the window by 1 [11]. If d < 1f, then (1f - d) packets will 
be transmitted. According to the analysis of computing YJ.i in 
Section III-A3, when the window size reaches Wn, a flow will 
drop one packet, i. e. ,  d = 1. Hence, in FR, a flow will send 
( ";; n - 1) packets. In our model, we only consider N :::; B, 
which implies that � > 1. Assume the packets in the first 
cycle of a FR period, which lasts about D, are successfully 
sent, then we can get 

F C Wn 
¥cN-N*+l) = ¥cN-N*+l) + 2 - d (26) 

TrN-N*+l) = Tr�-N*+l) + D (27) 
The time that one of the (N - N* + 1) unlucky flows 

spends transmitting a block decides when the next block can 
be transmitted. Since the (N* -1) flows can finish their blocks 
in a TO period and the other flows will not undergo more TOs 
after the first round, the time that a unlucky flow needs to finish 
one block is 

TB yB F = To + yF T(N-N*+l) (N-N*+l) 
Therefore, we can get the goodput G2 as N 2:: N* 

G - N yB S _ NSpyBYS'_N*+l) 2 - X TB X P - '" yF yBTF' '0 (N-N*+l)+ (N-N*+l) 

(28) 

(29) 

Combining Eq. (19) and (29), we can obtain that the TCP 
goodput of N senders concurrently transmitting data blocks 
to a receiver is 

N<N* 

Toy(t_N*+l)+yBT{N_N*+l) N 2:: N* 

C. Goodput with Window Limitation 

The model above is based on the premise that the window 
limitation of the receiver, i. e. , the advertised window size, is 
so large that its impact can be neglected. In this subsection, 
the window limitation WI will be taken into account. 

1) Wt < W m: All the windows stop increasing after 
reaching WI if WI < Wm. Based on our analysis, no packets 
will be dropped. Therefore, all the flows keep transmitting data 
at the rate of �. Since they are totally synchronous, all the 
flows will finish transmitting a block almost at the same time. 
No senders need to wait for other sluggish senders. Thus, the 
goodput when window limitation WI is smaller than W m is 

WI 
GI = NSp RI 

(30) 

In Eq. (4), the dynamics of the queue system is modeled as 
Q i = min{(NWi - CD - ¢)+,B}. The window limitation 
Wt < Wm indicates that Qi < B. Thus Q i = (NWi - CD­
¢)+. Since ¢ describes the difference between Qi-l and Q i, 
while Wi-1 = Wi = WI , hence Q i- l = Q i and further ¢ = o. 
Thus, Q i = (NWi - CD)+. From Eq. (2), we can get that 
RI = N/j'l if NWI - CD> 0, else RI = D. Finally, we can 
obtain the goodput when WI < W m as follows: 

GI= D 
{ NSpWl 

CSp 
(31) 

2) WI = Wm: When the windows of N flows increase 
to Wm, the windows of Nm flows will drop to � due to 
dropping one packet based on the analysis in Section III-A3, 
and the other (N -Nm) flows will keep Wm until the windows 
of the Nm flows increase to W m again. Then another Nm 
flows will drop to ";=. Consequently, in a CA period, the 
expected number of packets successfully transmitted is 

AC Nm Nm Y = 
N 

Ym + (l-
N 

)WmTm (32) 

where Ym and Tm is defined in Eq. (3) and (10), respectively. 
The expected duration of a CA period is 

tc 
= Tm. Thus, 

the goodput with window limitation (WI = Wm) is 
AC 

G -
NSpY 

w: W (33) 1- tc ' 1= m 

3) WI 2:: Wm+1: When WI is larger than Wm, the goodput 
of TCP incast will not be affected by the advertised window 
size, thus we have 

GI=G, (34) 

IV. VALIDATION AND ANALYSIS 

In this section, we validate our model through simulations 
on the ns-2 platform and discuss the impact of some param­
eters upon TCP incast goodput. The module for TCP incast 
is developed by A. Phanishayee et. al. in [1]. The RTOmin is 
set to be 0.2s. 

A. Without Window Limitation 

1) Different Buffer Size B: Figure 7-9 show the normalized 
goodput of our proposed model and simulation results with 
different buffer size B. The title of the graph indicates the 
bottleneck link capacity C, the bottleneck buffer size B, the 
synchronized data block Sb, the propagation delay D, and the 
packet size Sp. The link capacity between each sender and the 
intermediate switch equals to C. 

Obviously, the model well characterizes the general ten­
dency of TCP incast, which indicates that the two types of 
TOs, BTTO and BHTO, indeed are the essential causes of 
TCP incast. Besides, we find that the critical point N* is 
just the goodput collapse point. Specifically, when N < N*, 
i. e. ,  before goodput collapse, some model results are not in 
conformity with the simulation data, The reason is that the 
frequency of BTTO is quite sensitive to the location of the 
lost packet since the lost packet must be one of the last three 
packets in a block. Therefore, the imprecise number of packets 
successfully transmitted in a CA period YJ.i and locations of 
lost packets will both have negative impact on the accuracy of 
the model. When N > N*, the model results are almost the 
same as the simulation data with different buffer size. 

From the three simulation curves in Figure 7-9, we can 
summarize three features. (1) Larger buffer size B improves 
the whole goodput with different N. This fact can be explained 
by our proposed model. Larger buffer size B augments the 
maximum window size Wm = l CDJB + �J + 1. Then the 
expected number of packets successfully transmitted in a CA 
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Figure 13. Normalized goodput with window 
limitation WI = 10 

Figure 14. Critical point N* with different B 
and C = IGbps 

Figure 15. Critical point N* with different Band 
C = lOGbps 

period, Yfj, increases. When N < N*, the probability of a TO 
period has a negative correlation with LCM(Yfj, yB), hence 
the good put has an ascendant trend as B increases. When 
N > N*, large maximum window size decreases the time 
taken by one of the (N -N* + 1) unlucky flows transmitting a 
block, namely, TB = To+ ypY TfS-N*+l becomes small. N-N*+l 
Thus, G2 increases. (2) Large B makes the critical point N* 
shift right. Before goodput collapse, that is, when the number 
of senders N is smaller than the critical point N*, the goodput 
largely depends on BTTO, while as N > N*, goodput is 
mainly determined by the frequency of BHTO, which will 
severely decrease TCP goodput. Larger buffer can make N* 
shift right since it can cache more packets. Therefore, larger 

B delays the onset of goodput collapse. (3) After the critical 
point N* , goodput becomes larger as N increases. TCP incast 
suffers quite low goodput when N equals to N*. However, the 

goodput slowly increases as N becomes larger. This can be 
explained using our model. Transmitting a block spends time 

B yB TF . T = To + yP N-N*+l' In our analytIcal model, a TO N-N*+l 
period lasts only one timeout, namely, its duration equals to 
To. Hence, when N becomes large, although the unlucky flows 
spend more time transmitting their blocks, the time taken by 
the TO period keeps unchangeable. Thus, larger N increases 
TB a little. While the number of senders N increases. Hence, 
goodput slowly increases. In fact, when N becomes very large, 
packets will likely be lost in the TO periods due to more severe 
bandwidth contention, that is, a TO period will possibly take 
longer time than To. In our model, we do not take this longer 
TO into consideration, so the analytical results slightly deviate 
from the simulation data when N becomes quite large. 

2) Different Synchronized Data Block Sb: Figures 10-12 
plot the proposed model and simulation results with different 
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block size Sb. We can see that the goodput becomes larger 
when the block size increases. But large block size has little 
impact on the onset of goodput collapse. According to our 
model, block size Sb is irrelative to the maximum window 
size. Therefore, the goodput of a CA period does not vary. 
When N < N*, the probability of a TO period has a negative 
correlation with LCM(yE , yB). Hence, when Sb becomes 
large, the probability of TO will have a decline tendency and 
consequently the goodput will increase. When N > N*, since 
in average one TO happens in each block. Thereby, when block 
size becomes large, the ratio of the time wasted by a TO 
period to the time spent by unlucky flows transmitting packets 
becomes smaller. As a result, the goodput increases. 

B. With Window Limitation 

Figure 13 shows the impact of the advertised window of 
the receiver on the goodput. We select a typical Wi = 10, 
According to Eq. (31)-(34), we get that 

(1) As N = 1, WI < of, hence, Gl = NSJJWI
. 

(2) As N E [2, 8], 0: < WI < Wm, hence Gl = esp. 
9 NS yC (3) As N = 9, WI = Wm, hence Gl = � .  

(4) As N > 9, WI > Wm, hence Gl = G. 
The results shown in Figure 13 validate that our model is 

accurate, and the advertised window WI can directly affect the 
goodput if there are Ni flows as well as WI :'S W';;i. 

C. Parameter Analysis 

N* is a quite important point since it is the critical point 
of the goodput collapse. We conduct a series of simulations 
with different N, B, e, and solve the value of N* using our 
analytical model. The results are presented in Figure 14-15. 
We can see that the critical point is mainly related to B, while 
the bandwidth of the bottleneck link has little impact on it. 
This is because the window of a flow becomes larger as e 
increases with a specific N, the number of served packets 
also increases during the first round of a block. These two 
impacts just counteract and thus larger e does not enlarge the 
probability of BHTO with a particular N. Therefore, larger e 
does not delay the onset of goodput collapse. With respect to 
buffer size B, larger buffer can temporarily keep more packets 
to prevent them from being dropped. Hence, larger B can 
delay the onset of goodput collapse. 

V. CONCLUSIONS 

In this paper, we build an analytical model to understand 
the essential causes of TCP incast, which is a crucial issue in 
data center networks due to its catastrophic performance dete­
rioration as the number of senders becomes large. The existing 
investigations on it try to find a good solution to TCP incast. 
However, they either need high cost, such as substituting TCP 
by UDP, or only can temporarily mitigate goodput drop, such 
as reducing RTOmin. To solve TCP incast substantially, the 
fundamental reasons should be firstly explored. In our work, 
we find that two types of TOs, BTTO and BHTO, significantly 
degrade the TCP goodput. The critical point between them is 
the onset of TCP goodput collapse. BTTO, which is caused 

by one of the last three packets in a block being dropped, 
happens when the number of concurrent senders is small. 
While BHTO is caused by dropping the first window of a block 
totally. It happens when the number of concurrent senders 
becomes large. At last, we validate the proposed model by 
comparing it with simulation data, finding that our model well 
characterizes the goodput of TCP incast. The insights provided 
by the proposed model will be helpful for developing more 
effective solutions to TCP incast at low cost. 
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