
This paper was presented as part of the main technical program at IEEE INFOCOM 2011

Modeling and Understanding TCP Incast in Data
Center Networks

Jiao Zhang, Fengyuan Ren, Chuang Lin
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

Dept. of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
Email: {zhangjiao08.renfy.clin}@csnetl.cs.tsinghua.edu.cn

Abstract-Recently, TCP incast problem attracts increasing
attention since the receiver suffers drastic goodput drop when it
simultaneously strips data over multiple servers. Lots of attempts
have been made to address the problem through experiments and
simulations. However, to the best of our knowledge, few solutions
can solve it fundamentally at low cost. In this paper, a good put
model of TCP ineast is built to understand why good put collapse
occurs. We conclude that TCP incast goodput deterioration is
mainly eaused by two types of timeouts, one happens at the tail
of a data block and dominates the good put when the number of
senders is small, while the other one at the head of a data block
and governs the goodput when the number of senders is large.
The proposed model describes the causes of these two types of
timeouts which are related to the incast communication pattern,
block size, bottleneck buffer and so on. We validate the proposed
model by comparing with simulation data, finding that it can
well characterize the features of TCP incast. We also discuss the
impact of most parameters on the goodput of TCP ineast.

Index Terms-Data Center Networks, TCP incast, Modeling,
Goodput

I. INTRODUCTION

TCP incast has risen to be a critical problem recently in data
center networks due to its catastrophic goodput collapse [1]­
[3]. Incast, a communication pattern, was first termed by Nagle
et al. in [4]. In incast communication pattern, multiple senders
concurrently transmit data blocks to a single receiver, and any
sender can not send another data block until all the senders
finish transmitting the current data block. When the number
of senders increases, the goodput of the receiver will become
lower than the capacity of the bottleneck link in one or even
two orders of magnitudes. The incast communication pattern
exists in many popular applications, such as cluster-based
storage systems [4]-[6], web research [7] and MapReduce [8].
To avoid the performance deterioration of TCP incast, lots of
attempts have been made to find the causes of TCP incast and
the methods to solve it [1]-[3].

The existing approaches to solve TCP incast problem can
be classified into four categories. First, avoiding timeout in
TCP [1], [3]. Experiment and simulation results show that too
many TimeOut (TO) periods in TCP incast lead to goodput
collapse. Therefore, several trials have been made to avoid
TOs. For instance, reducing duplicate ACK threshold of en­
tering Fast Retransmission (FR) from 3 to 1, disabling slow
start phase, and trying different TCP versions. However, most
of these methods are ineffective. Second, reducing minimum
Retransmission Timeout (RTOmin) [2]. RTOmin typically

equals to 0.2s in TCP, which will result in a big waste of
bandwidth in data center networks where the link capacity
is quite high. Hence, Vasudevan et al. suggested reducing
RTOmin to microsecond-granularity to reduce the capacity
waste during TO periods. This method not only needs to
modify the Linux kernel timer into the higher resolution,
which is difficult to be implemented, but also is not very
safe in the networks with larger Round Trip Time (RTT).
More importantly, if optical fibre, whose current maximum
rate is 12.8 Tbps, becomes popular in data center networks in
future [9], even if microsecond order RTOmin will still elicit
unignorable capacity loss. Therefore, reducing RTOmin tem­
porarily mitigates TCP incast, but not solves it fundamentally.
Third, replacing TCP. The engineers in Facebook have adopted
this crude method to avoid TCP incast [7]. They employed
UDP as transport layer protocol and endowed the application
layer the responsibility of flow control. Yet TCP is so popular
that replacing it will cost too much. Fourth, employing other
mechanisms except from modifying TCP. A. Phanishayee et
al. proposed using Ethernet Flow Control to solve TCP incast
[1]. However, it can not work well if multiple switches exist
between the senders and the receiver due to head of block.

In sum, sorts of solutions to TCP incast have been proposed.
Unfortunately, most of them have various limitations. To
substantially solve TCP incast at low lost, firstly we need to
thoroughly understand why it happens. In this paper, a goodput
model of TCP incast is built to understand TCP incast in
depth. Although there are many literatures on TCP modeling
[10]-[14], our modeling is different in three aspects: (1)
The application in our model exhibits incast communication
pattern. Yet, existing TCP models usually assume that the
application layer always passes enough data to the transport
layer. (2) TCP incast model describes the overall goodput of
the bottleneck link which contains multiple flows, while most
of existing TCP models focus on the throughput of only one
flow. (3) The RTT in previous work is generally assumed to
be constant since it is difficult to be accurately computed in a
network with complicated and unknown topology. However, in
TCP incast environment, more precise RTT model is needed
to characterize the causes of goodput collapse.

In our TCP incast model, we summarize that the goodput
collapse in TCP incast is mainly caused by two kinds of TOs.

• Block Tail TimeOut (BTTO): It is caused by the special
incast communication pattern. Since each sender can not

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 1377

get the next block data from the application layer until
all the senders finish transmitting the current block, if
one of the last three (Assume three duplicate ACKs are
needed to trigger FR.) packets in current block is dropped,
then there will not enough ACKs to trigger FR, timeout
naturally occurs.

• Block Head TimeOut (BHTO): BHTO is apt to happen
when the number of senders becomes larger. During
transmitting a block, some of the senders will finish
earlier due to TCP unfairness in small timescale. Then
they will wait for the others to finish without taking any
bandwidth. Therefore the other flows will finish their
blocks using more capacity in average, which results
in higher window sizes when they finish the current
block. At the beginning of the next block, all the senders
inject their whole windows to the small Ethernet buffer,
which usually causes lots of dropped packets. If a flow
unfortunately losses its whole window, which can easily
happen since the window of each flow becomes smaller
as N increases, then it will enter a TO period.

Investigating the causes of these two kinds of TOs in depth
is beneficial to develop an effective and simple solution to
avoid goodput collapse of TCP inast.

The remainder of the paper is organized as follows. We first
introduce the main assumptions and notations in Section II.
Subsequently, the goodput of TCP incast is modeled in Section
III in detail. In Section IV, the model results are compared with
the simulation results and the impact of different parameters
upon TCP goodput is analyzed. Finally, the paper is concluded
in Section V.

II. ASSUMPTIONS AND NOTATIONS

A. Assumptions

1) T CP lncast Scenario: Assume that only packets of the
synchronized data blocks are transmitted through the bottle­
neck link, and the bottleneck buffer employs Drop Tail queue
management scheme. Also, we assume that packets will be
lost only when the bottleneck buffer overflows, namely, the
packets will not be dropped due to other reasons, such as
link failure. Assume that all the windows evolutions of the
flows are synchronized when the number of senders is small.
Besides, if the number of senders is larger than the bottleneck
buffer size in unit of packets, then even if each sender transmits
one packet, the bottleneck buffer will be overwhelmed, so we
assume the number of senders is smaller than the buffer size.

2) T CP: Assume that the TCP version is NewReno, which
is popular in practice. The receiver sends one ACK for
each received packet and ACKs are not lost. The threshold
of duplicate ACKs for triggering FR phase is 3. Since the
unabiding slow start process imposes a negligible impact on
TCP througput, it is igonred in our modeling.

B. Notations

Before defining the notations, we first introduce a concept
called round. The first round starts from a Congestion Avoid­
ance (CA) period and lasts one RTT. The after round starts

�ender
ODD s , A Data./' Y Block DOD � �........ c

... C\ � 11111 . • � DOD 07 .� ... Bottleneck lmk

000 &
Figure 1. A scenario of TCP incast, where multiple senders concurrently
transmit data blocks to a single receiver.

TABLE I
KEY NOTATIONS IN OUR MODEL

Not. Description
W m Window size when some of the N flows begin to drop packets
Wn Expected maximum window size
WI Advertised window size of the receiver
D Propagation delay between each sender and the receiver
TC Expected duration of a CA period with total N flows
Y� Expected number of packets successfully transmitted in a CA period
Nm The number of flows which lost packets when window size is Wm
y B The block size in unit of packets
* Expected number of successfully sent packets in a CA+FR period
TN Expected duration of a CA+FR period
N* Critical point between BHTO dominating goodput and BTTO doing
G Goodput of the receiver without advertised window limitation
GI Goodput with window limitation

from the end of the last round and lasts one RTT. A CA period
ends with the next round after some packets being dropped. If
the dropped packets are detected by the sender through three
duplicate ACKs, then a FR period will be entered. Else if
through a fired retransmission timer, then a TO period occurs.

A scenario of TCP incast is shown in Figure 1. N senders
transmit data blocks to a single receiver. The bottleneck
bandwidth is C packets per second. The bottleneck buffer
size is B packets. Each packet has the same payload Sp Bytes.
Considering a CA period, let Wi be the window size of a flow
in round i whose duration is Ri. Qi denotes the queue length
of the bottleneck buffer at the end of round i. The other key
notations are summarized in Table I for the sake of terseness.

III. MODELING GOOD PUT OF TCP INCAST

The goodput of TCP NewReno [15] in the Incast environ­
ment will be modeled in this section. As aforementioned in
Section I, two types of TOs lead to TCP good put drop. We
will first show them in Figures 2 and 3 which are plotted based
on the results of simulations conducted on the ns-2 platform.

Figure 2 shows the scenario where BTTO happens. 8
senders transmit synchronized data block to the same receiver.
The figure plots the window evolution of two senders among
them. A pentagram plotted at (t , 20) represents that a block
finishes at time t. The big X represents a retransmission
timer is fired. The advertised window size of the receiver
is set to 1000 packets, which is large enough that it has
no impact on the sending window evolution. We can see
that at about time t = 0.79s, sender 1 finishes Block 10
and then the window size does not vary. While sender 2

1378

Block 10 finished Block 13 finished
20

IIIIIIIIIIIII!'

0
0.8 0.9 1.1 1.2 1.3

14 finished
20

� 15
a. � 10
c: � 5 Timeout u �

0
0.8 0.9 1.1 1.2 1.3 1.4

Time(s)

Figure 2. The scenario where BTTO happens. N = 8 senders concurrently
transmit packets to the same receiver. The packet size Sp = 1KB, bottleneck
bandwidth C = 1Gbps=12.5pkts, buffer B = 64packets, synchronized block
Sb = 1024KB. The advertised window of the receiver is set to 1000 packets.
We can see that as long as one flow enters a TO period at the end of a block,
the other flow will also undergo a TO period.

w 15'-·I--.---�-----,----.---,.*r�-,----,
� I Block 2 finishe r:- Block 3 begin .e, 10 I <-- Block 2 begins II.
� 5 (I/IIIJI!' : hili
u OL-�-L ____ � ____ L-__ -L��� ____ L-__ �

0.3 0.35 0.4 0.45 0.5 0 .55 0.6 0.65

i;� III}, Block 2 finished� :<-- Block 3 begin
� 5 f : <-- Block 2 begins /111". fill/fill
u O�:�--�--�----�----����--�--� O. �� 0.35 0.4 0.45 0.5 0.55 0.6 0.65

W 15
% 10 <D
-g 5
� u 0

o .3

i I{. �BIOCk 2 finished

' Jill I <-- Block 2 begins
0.35 0.4 0.45 0.5

Time(s)

I

�t�L3begin
0':'"�5 0.6 0.6 5

Figure 3. The scenario where BHTO happens. The main parameters of this
scenario are: N = 32 , Sp = 1K B, B = 64 , Sb = 256K B, C = 12.5pkts.
The window evolutions of sender 1, 5, 6 are plotted to illustrate BHTO.

suffers a TO period before finishing Block 10 during time
about (0.79 "" 0.98)s. By observing the congestion window
evolution of TCP 2, we find that the penultimate packet of
Block 10 of sender 2 was dropped, although the last packet
of Block 10 was successfully transmitted, only one duplicate
ACK was received by sender 2. What's more, according to the
incast communication pattern, the packets of Block 11 will not
be injected into the transport layer from the application layer
until all senders finish Block 10. Therefore, sender 2 can only
wait until the retransmission timer fires at about time 0.98s,
namely, a timeout event happens. Then sender 2 retransmits
the dropped packet, and then Block 10 is finished. With respect
to sender 1, although it finishes Block 10 much earlier than
sender 2, it can not get the data of Block 11 immediately since
sender 2 does not finish Block 10 yet. Hence, it also waits until
sender 2 finishes Block 10. The bandwidth is wasted during

0.79"" 0.98s, which deteriorates the goodput. While at about
1.25s, sender 1 delays finishing Block 14 due to the same kind
of timeout and therefore also degrades good put.

Figure 3 illustrates the situation where BHTO happens.
N = 32 flows concurrently send packets to the same receiver.
The advertised window size of the receiver is also set to
1000 packets. We plot three of the 32 flows to illustrate the
behavior of BHTO. The pentagram represents that a block
is finished. At time 0.325s, all the senders begin to transmit
Block 2. We can see that sender 6 finishes Block 2 at about
0.35s. Unfortunately, sender 1 and 5 do not receive any ACKs
and thus their windows do not change. Through tracking the
simulation data, we can find that both sender 1 and 5 lose all
packets sent in their first windows at the beginning of Block
2 and thus no new and duplicate ACKs are fed back to the
sender. Therefore, their retransmission timers fire at about time
0.52s. And at 0.56s, both of them finish Block 2. It can be
inferred that all the other flows also finish Block 2 before 0.56s
since the transmitting of Block 3 begins at this moment. With
respect to Block 3, all the three senders luckily finish their 3rd
Block soon without undergoing TO periods. However, they do
not continue to transmit Block 4 at once, which implies that
some other flows delay finishing the transmission of Block 3.

Through investigating numerous simulation data, we find
that BTTO dominates TCP goodput when N is small while
BHTO does when N is large. Let N*(l :::; N* :::; N) denote
the critical value between these two situations. We will firstly
model the goodput when N is small where BTTO is the main
factor of degrading TCP performance. Subsequently, N* will
be computed and the goodput when N is large where BHTO
significantly deteriorates TCP goodput will be modeled .

A. Goodput As N < N*
1) Dynamics of Queue Length: Considering a CA period,

during the i-th round, N senders transmit data to one receiver.
Then NWi packets will be injected into the bottleneck buffer,
and C Ri packets will be served by the bottleneck link. Thus,
we can obtain Qi, the number of packets in the queue at the
end of the i-th round, as follows.

Qi = min{(Qi_l + N x Wi - ex Ri)+, B} (1)

a+ equals to a if a > 0, else equals to O.
2) Relationship Between R7T and Queue Length: Assume

that the queue is FIFO and the propagation delay between each
source to the destination is a constant value D. As a rough
approximation, Ri is the sum of the propagation delay and the
queuing delay as follows:

Ri = JE(D +
Qi-l + ¢) (2)

C
where ¢ is a stochastic variable which models the possible
longer queuing delay of the transmitted packets than Q�l in
round i. Clearly, the first packet transmitted in round i will
undergo Q�l queuing delay since the queue length at the end
of round (i -1) is Qi-l. However, the afterwards packets will
suffer longer queuing delay if the rate of the arrival traffic is
larger than that of the departure traffic.

1379

Congestion Window _ Lost packet

f---I"'-"'h"-', ..

f----4"'-I-----1 i
f---+---+------1 �-fJn
f---+--t------1 i
'R;;�;" ... 1t,; 7?::: ..

Time 1---- A CA period ----i

Figure 4. Congestion window evolution during a CA period

3) Number of Packets Successfully Transmitted in a CA
Period: Figure 4 illustrates the congestion window evolution
in a CA period. The window size increases by 1 in each
round i(i > 1) until some packets are dropped at round n.
Rounds (1 rv n + 1) form a CA period. Let Wn be the
maximum congestion window size in a CA period. d n packets
will be lost when the window size becomes Wn. In the last
round, f3n packets will be transmitted. Therefore, the number
of successfully transmitted packets Y n in a CA period is

(3)
Wn where Sn = Lj�o(� + j) = �(Wn)2 + %Wn.

Now compute the maximum window size Wn. According
to Eq. (I) and (2), we can infer

Qi = min{(NWi -CD -¢)+, B} (4)

In CA phase, the difference between Qi and Qi-I is
about N according to Eq. (4). The first packet in round i
suffers QC' delay, and the last packet in round i suffers
�i = Qi-!; +N delay. Since the arrival rate and departure rate
are both constant, we can infer that IE(¢) = �. If Qi > B ,
i. e. , Wi > CD+;:+!f, some packets will be dropped. Let

W _ lCD+B 1J m- N +2 +1 (5)

In the m-th round, approximately Nm = NWm -lCD +
� + BJ packets will be dropped. Obviously, 1 � Nm � N.
Since the windows evolutions of all the flows are synchronized
when N is small, their packets will be fairly dropped. So we
can infer that about Nm flows will lose one packet each. While
the window of the other (N -Nm) flows will increase to
Wm + 1. Assume that each of the (N -Nm) flows will lose
one packet when their window sizes are W m + 1. Therefore,
we can get the maximum window size in a CA period

W _ {Wm n - Wm + 1
with probability lj;;'
with probability (1 -!it) (6)

Hence, the expected number of packets successfully trans­
mitted by one of N flows in a CA period, Yfj, is

(7)

Block h·1 Block h

... rro···�····i···i·"·i··r·"I···i"·(··"iiijj

W'"OOw -;:;/'"
D Successful packet
• Lost packet
o Nonnal ACK
EB Duplicate ACK

Timeout

Figure 5. The scenario where a BTTO happens

Time

Assume f3i uniformly distributes between 1 and Wi, then
its expectation IE(f3i) = �i. Based on the analysis above, we
have dm = dm+1 = 1. Hence, from Eq. (3) and (7), we can
obtain that

C (lNm YN =IE N (Sm + f3m -dm)

+ (1 -�)(Sm+1 + f3m+1 - dm+d J) (8)

=l�(W)2+2W +�-(�W + 13)NmJ 8 m m 8 4 m 8 N
4) Duration of a CA Period: Assume Qi-l > 0(1 � i �

n) , namely, there are backlog in the buffer during CA phases.
Combining Eq. (2) and (4), we have

R _ NWi-1 ,- C (9)

Since WI = �n, according to the window regulation law in
slow start phases, the window size Wo before the first round
should be �n. Thus, the duration Tn of a CA period with the
maximum window size Wn is as follows:

n+l N 3 Tn = L Ri = C (-S(Wn)2 + Wn) (10)
i=l

Similar to the analysis of computing the number of the
successfully transmitted packets Yfj in a CA period, the
expectation of the duration TfJ of a CA period is

C Nm Nm TN = N Tm + (1 - N)Tm+l
= N (�(W)2 �W 1 1 _ (�W �)Nm) C 8 m + 4 m+ 8 4 m+ 8 N

(11)

5) Probability of Block Tail Timeout (BTTO): Figure 5
illustrates when timeout events happen at the tail of blocks.
As long as any one of the last three packets in a block is lost,
then a timeout event will appear due to inadequate ACKs for
triggering FR. As shown in Figure 5, the third packet from
the end of Block h is lost, then even if the last two packets of
Block h are successfully transmitted, the sender can receive
only two duplicate ACKs, which insufficiently triggers a FR
procedure. Then, when the retransmission timer fires, a timeout
event occurs. We refer to this type of TO as BTTO. Next, the
probability of this event occurrence is deduced.

1380

The number of packets successfully transmitted by a flow
during a CA period is Yfj. The number of packets that a block
contains, denoted by Y B, is Y B = I f-l, where Sb, Sp are

p
the sizes of a block and a packet, respectively. If a TO period
appears after k CA periods, then at least one lost packet in
the k-th CA period is one of the last three packets in a block,
namely

kYfj -a = hyB - fJ, k and h are integers (12)

where a, a stochastic variable, is the number of packets
successfully transmitted after a lost packet in the k-th CA
period. If a packet is dropped in round n, then a = Wn - l.
Based on the model of the maximum window size Wn defined
in Eq. (6), we have

with probability �
(13)

with probability (1 - �)

If (k Yfj-a) is just one of the last three packets in the h-th
Block, then a TO period will appear. hyB - fJ(fJ E {a, 1, 2})
models one of the last three packet in the h-th Block.

Denote y(x) = min{klkYfj-hyB = x }. For a specific a
value and a flow f, the number of CA periods between two
successive TO periods is

k! = min{y(a), y(a -1) , y(a -2)} (14)

Now consider N flows. If at least one of the N flows enters
a BTTO period, the other flows will also wait for a period
which almost equals to the BTTO period even if they have
successfully transmitted Block h (Figure 2). This is because
they can not get the next block data from the application layer.
Therefore, the probability of the BTTO period of a flow is the
minimum probability of BTTO of the N flows.

Let km in be the number of CA periods between two
successive TO periods when there are total N flows. Define

if ktv=-l < ktv=
else

with probability 1 -(Pr[a = a 2])N
with probability (Pr[a = a 2])N

Thus, the expectation of km in is
2

lE(km in) = I>!iPr[a = ad i=l

(15)

(16)

(17)

Hence, the probability of entering a TO period from a CA
period is

(18)

Now compute the duration of a TO period TO. A TO period
possibly contains several timeouts and ends with a successfully
retransmitted packet. In our model, the window evolution of all
the flows can be assumed to be synchronized when N is small,

and the packets will only be dropped when the bottleneck
buffer overflows, so the retransmitted packet after the first
timeout in a TO period will be successfully transmitted if
N < B since the windows of all the flows start from 1
after a timeout. Let To denote the duration of the first timeout
duration, which usually equals to RTOm in since the RTT of
data center networks is quite small. The duration of a TO
period equals to the first timeout duration, namely, TO = To.

6) Goodput: When N < N*, at the end of each CA period,
a TO period happens with the probability pO. Thus, TCP
goodput G1 as N < N* is calculated as follows:

yC
G1 = N TlJ + �OTOSp

NSpliW;, + 2Wm + i -(�Wm + 1:)� J
� (iW,; + � Wm + 181 -(�Wm + 181)�) + pOTo

(19)
Remarks: If there are only CA periods, then according

to the expression of yfj and TlJ, TCP goodput of all the
N senders approximately equals to C no matter what values
N, B, Sb take. Therefore, the probability of TO periods, pO,
is the main factor of degrading goodput. pO is decided by
whether the lost packet is one of the last three packets in a
block, which has negative correlation to the Least Common
Multiple of yB and yfj , i. e. , LCM(yB, Yfj). Thereby, larger
block size yB decreases pO and thus improves goodput G1.
B. Goodput As N > N*

1) Calculation of N*: By observing simulation results, we
find that when N becomes relatively large, most TO periods
happen at the beginning of blocks. While few TO periods
happen in the subsequent rounds. This is because some flows
will have larger window sizes at the end of current block if
the other flows finish their blocks earlier. Besides, each flow
injects all the packets into networks according to its window
size at a quite short interval at the start of the next block. If
these packets can not be accommodated by the buffer, some
of them will be dropped. A unlucky flow, which unfortunately
loses all the packets in its window, will enter a TO period.
While in the subsequent rounds, the congestion windows are
regulated by CA procedure. Only one packet is transmitted
after receiving an ACK. Hence, there are less traffic burst. All
the flows lose packet more fairly than that at the beginning of
a data block transmission. And the flows will timely response
to packet droppings and thus few timeout events appear due
to full window losses. We refer to the TO periods which occur
at the start of blocks as Block Head TimeOut (BHTO).

In reality, the two types of TO periods, i. e. , BTTO and
BHTO, likely happen when N equals to some values. Next
the critical point N* is computed. If N* senders transmit data
to the same client, then in average one flow will suffer a BHTO
period in each block. When N < N*, BTTOs are dominative,
while when N 2: N*, BHTOs are significant.

To determine whether a flow enters a TO period at the
beginning of Block b, we first compute the number of lost

1381

B
I, .··· ... ······ 0 ,

J(fIIIIIIJIIII-�--�
Droppe) \ / /'
pkts Db J, I, J I,�B+O, .j,
[1 1 ,;::II��II'�,):J .

tCAb) time

Figure 6. The behavior of the packets in the first windows of all the flows at
the beginning of Block b.

packets Db at the first round of its transmission. Let Ab
be the expected summation of the first windows of all the
flows at the start of Block b. If all the windows of the N
flows vary synchronously, then the windows of all the flows
uniformly distribute between ";n and Wn. While the system
can accommodate about NWn packets. Hence, in theory few
packets will be lost at the start of Block b. However, simulation
results tell that when N becomes large, the asynchronism
of the windows evolutions can not be ignored. As stated in
Section I1I-A3, Nm flows lose packets when their congestion
window sizes equal to W m while the window of the other
(N - Nm) flows continue to increase. Hence, approximate
(N -Nm) flows will finish transmitting Block (b -1) earlier
than the other Nm flows. Then the Nm flows will compete
for the bandwidth of the bottleneck link to transmit their
remaining (b -1)-th Blocks. Therefore, at the start of Block b,
the windows of the (N -Nm) flows take values between ";=
and W m, while the windows of the other Nm flows uniformly

wN= N distribute between � and W m =. Let

(20)

Hence, we can obtain that
3 3 Ab = (N - Nm) x 4Wm + Nm x 4W�= (21)

The number of dropped packets Db at the beginning of
Block b is the difference between the arrival and the summa­
tion of departure plus backlog in the buffer, namely

Db=Ab- (TC +B),O<T)<l (22)

where T is the maximum time spent by the senders injecting
the packets in their first windows. Since W�= � Wm, and
we assume the capacity of the link between each sender and
the intermediate switch is C pkts, the maximum time taken

wN". by the senders is T = C .
Next compute the number of flows suffering a TO at the

start of Block b. Assume that the arrival rate to the bottleneck
buffer, denoted by r, is constant. As shown in Figure 6, if all
the flows totally spend time t(Ab)1 injecting their first win­
dows to the network, then during time t(h)(t(Il) < t(Ab)),

't(x) represents the time taken by transmitting x packets, i.e., t(x) = �.

no packets will be dropped since h = B+01, where 01 is the
number of packets served by the bottleneck link during t(h).
However, some packets could be lost if the arrival rate is larger
than the capacity of the link during t(Iz). The probability Pt
that a flow starts during t(I2) is

P, _ t(I2) _ rt(I2) _ Iz t
- t(Ab) - rt(Ab) - Ab

Therefore, the expected number of flows Nt which starts
during t(I2) is

12 Nt = N x P t = N x
Ab

(23)

All the lost packets Db are dropped during t(I2). Thus, the
packet loss probability Pp is Pp = f;. Then the probability
Pw that all the packets of a window W are dropped is

(24)

Since the link capacity is constant, the number of departure
packets during t(h) is 01 = TC X �. Therefore, we can
obtain that II = B+TCX �'b' Clearly Ab = h +12, Therefore,

BAb
12 = Ab -

A C
(25)

b-T
Combining Eq. (23)-(25), we can obtain that the expected

number of flows entering TO period after the first round is

NO = Nt x (Pp)W

B Db -= N(l -
A C

) x (BA)
W

b -T Ab - __ b_ Ab-TC

here TV = (1-N".) x Q W + N". X Q WN". is the expectation N 4 m N 4 m
of the first window sizes of each flow.

The minimum N, which enables NO = 1, is N*.

2) Goodput: When N = N*, in average one flow will enter
TO at the beginning of each block. And when N > N*, we
can infer that in average (N* -1) lucky flows can transmit a
block without undergoing any TOs, and the other (N -N*+l)
flows will enter a TO period. Assume the (N* -1) lucky flows
can finish their blocks during this TO period. Then, after the
TO period, the other (N - N* + 1) flows compete for the
bandwidth to transmit packets. All of their windows start from
1, and they transmit a packet only after receiving a ACK. They
can relatively fairly use the bandwidth of the bottleneck link
without full window losses. But their maximum window sizes
are very small when N is large, the FR periods are so frequent
that the corresponding time can not be ignored.

Let TF denote a CA period plus the subsequent FR period.
Similar to the analysis as N < N*, we need to compute the
number of packets successfully transmitted in a TF period
by one of the (N - N* + 1) unlucky flows, Y%-N*+I' and
the duration of a TF period, TJ:;-N*+I' NewReno will enter
into FR after receiving three duplicate ACKs. If the current
window is W, d packets are dropped, then the congestion
window is (� + W - d) since each duplicate ACK increases

1382

the window by 1 [11]. If d < 1f, then (1f - d) packets will
be transmitted. According to the analysis of computing YJ.i in
Section III-A3, when the window size reaches Wn, a flow will
drop one packet, i. e. , d = 1. Hence, in FR, a flow will send
(";; n - 1) packets. In our model, we only consider N :::; B,
which implies that � > 1. Assume the packets in the first
cycle of a FR period, which lasts about D, are successfully
sent, then we can get

F C Wn
¥cN-N*+l) = ¥cN-N*+l) + 2 - d (26)

TrN-N*+l) = Tr�-N*+l) + D (27)
The time that one of the (N - N* + 1) unlucky flows

spends transmitting a block decides when the next block can
be transmitted. Since the (N* -1) flows can finish their blocks
in a TO period and the other flows will not undergo more TOs
after the first round, the time that a unlucky flow needs to finish
one block is

TB yB F = To + yF T(N-N*+l) (N-N*+l)
Therefore, we can get the goodput G2 as N 2:: N*

G - N yB S _ NSpyBYS'_N*+l) 2 - X TB X P - '" yF yBTF' '0 (N-N*+l)+ (N-N*+l)

(28)

(29)

Combining Eq. (19) and (29), we can obtain that the TCP
goodput of N senders concurrently transmitting data blocks
to a receiver is

N<N*

Toy(t_N*+l)+yBT{N_N*+l) N 2:: N*

C. Goodput with Window Limitation

The model above is based on the premise that the window
limitation of the receiver, i. e. , the advertised window size, is
so large that its impact can be neglected. In this subsection,
the window limitation WI will be taken into account.

1) Wt < W m: All the windows stop increasing after
reaching WI if WI < Wm. Based on our analysis, no packets
will be dropped. Therefore, all the flows keep transmitting data
at the rate of �. Since they are totally synchronous, all the
flows will finish transmitting a block almost at the same time.
No senders need to wait for other sluggish senders. Thus, the
goodput when window limitation WI is smaller than W m is

WI
GI = NSp RI

(30)

In Eq. (4), the dynamics of the queue system is modeled as
Q i = min{(NWi - CD - ¢)+,B}. The window limitation
Wt < Wm indicates that Qi < B. Thus Q i = (NWi - CD­
¢)+. Since ¢ describes the difference between Qi-l and Q i,
while Wi-1 = Wi = WI , hence Q i- l = Q i and further ¢ = o.
Thus, Q i = (NWi - CD)+. From Eq. (2), we can get that
RI = N/j'l if NWI - CD> 0, else RI = D. Finally, we can
obtain the goodput when WI < W m as follows:

GI= D
{ NSpWl

CSp
(31)

2) WI = Wm: When the windows of N flows increase
to Wm, the windows of Nm flows will drop to � due to
dropping one packet based on the analysis in Section III-A3,
and the other (N -Nm) flows will keep Wm until the windows
of the Nm flows increase to W m again. Then another Nm
flows will drop to ";=. Consequently, in a CA period, the
expected number of packets successfully transmitted is

AC Nm Nm Y =
N

Ym + (l-
N

)WmTm (32)

where Ym and Tm is defined in Eq. (3) and (10), respectively.
The expected duration of a CA period is

tc
= Tm. Thus,

the goodput with window limitation (WI = Wm) is
AC

G -
NSpY

w: W (33) 1- tc ' 1= m

3) WI 2:: Wm+1: When WI is larger than Wm, the goodput
of TCP incast will not be affected by the advertised window
size, thus we have

GI=G, (34)

IV. VALIDATION AND ANALYSIS

In this section, we validate our model through simulations
on the ns-2 platform and discuss the impact of some param­
eters upon TCP incast goodput. The module for TCP incast
is developed by A. Phanishayee et. al. in [1]. The RTOmin is
set to be 0.2s.

A. Without Window Limitation

1) Different Buffer Size B: Figure 7-9 show the normalized
goodput of our proposed model and simulation results with
different buffer size B. The title of the graph indicates the
bottleneck link capacity C, the bottleneck buffer size B, the
synchronized data block Sb, the propagation delay D, and the
packet size Sp. The link capacity between each sender and the
intermediate switch equals to C.

Obviously, the model well characterizes the general ten­
dency of TCP incast, which indicates that the two types of
TOs, BTTO and BHTO, indeed are the essential causes of
TCP incast. Besides, we find that the critical point N* is
just the goodput collapse point. Specifically, when N < N*,
i. e. , before goodput collapse, some model results are not in
conformity with the simulation data, The reason is that the
frequency of BTTO is quite sensitive to the location of the
lost packet since the lost packet must be one of the last three
packets in a block. Therefore, the imprecise number of packets
successfully transmitted in a CA period YJ.i and locations of
lost packets will both have negative impact on the accuracy of
the model. When N > N*, the model results are almost the
same as the simulation data with different buffer size.

From the three simulation curves in Figure 7-9, we can
summarize three features. (1) Larger buffer size B improves
the whole goodput with different N. This fact can be explained
by our proposed model. Larger buffer size B augments the
maximum window size Wm = l CDJB + �J + 1. Then the
expected number of packets successfully transmitted in a CA

1383

C=1Gbps, B=64, Sb=256KB, D=117us,Sp=1KB C=1 Gbps, B=128, Sb=256KB, D=117us,Sp=1 KB C=1 Gbps, B=256, Sb=256KB, D=117us,Sp=1 KB

� O S
"0 o o
c.? 0.6
"0
�
'jij 0.4
E
5
Z 0.2

-- Model
-- Simulation '5 .g. 0.8

g
� 0.6
.�
ro
E 0.4
o
Z

0.2

1

� os
"0 o o
c.? 0.6
"0 OJ N
'jij 0.4
E
5
Z 0.2

°0L- --�10-----2�0-----3� 0 -----4�0 ----�50
Number of senders

o 10 20 30 40 50 O L---�--�--�----�--�--��
o 10 20 30 40 50 60

Number of senders Number of senders

Figure 7. Normalized goodput with 64KB buffer Figure 8. Normalized goodput with 128KB Figure 9. Normalized goodput with 256KB buffer
buffer

C=1Gbps, B=12S, Sb=64KB, D=117us,Sp=1KB C=1Gbps, B=12S, Sb=12SKB, D=117us,Sp=1KB C=1 Gbps, B=128, Sb=512KB, D=117us,Sp=1 KB
1

"[0.8
"0 o o
c.? 0.6
"0 OJ N 'jij 0.4
E o
Z 0.2

o
o

M

\
�

10 20

I -Madel , I '
-- Simulation

1

"§. 0.8
"0 0 0
c.? 0.6
"0 OJ N 'jij 0.4
E 0
Z 0.2

0
30 40 50

1

� O.S "0 0 0
� 0.6 OJ .�
ro
E 0.4
0
Z

0.2

0 10 20 30 40 50 0 10 20 30 40 50
Number of senders N umber of senders Number of senders

Figure 10. Normalized goodput with 64KB Figure II. Normalized goodput with 128KB Figure 12. Normalized goodput with 512KB block
block block

C=1 Gbps, B=64, Sb=128KB, D=117us Sp=1 KB Sb=12SKB,D=117us,Sp=1KB Sb=12SKB, D=117us,Sp=1 KB
50 r---�----------------------� 50

-Model,WI=10
- • - Simulation,WI=10

"0
�
'jij 0.4
E o
Z 0.2

N=10
- - -0- -

O L---�----�----�----�--�
o 10 20 30 40 50

40

:£ 30 o a.
� 20 :.e
U

10

100 200

40
Z
.� 30 a a.
� 20
8

10

0
300 400 500 0 100 200 300 400 500

Number of senders Buffer size B (packets) Buffer size B (packets)

Figure 13. Normalized goodput with window
limitation WI = 10

Figure 14. Critical point N* with different B
and C = IGbps

Figure 15. Critical point N* with different Band
C = lOGbps

period, Yfj, increases. When N < N*, the probability of a TO
period has a negative correlation with LCM(Yfj, yB), hence
the good put has an ascendant trend as B increases. When
N > N*, large maximum window size decreases the time
taken by one of the (N -N* + 1) unlucky flows transmitting a
block, namely, TB = To+ ypY TfS-N*+l becomes small. N-N*+l
Thus, G2 increases. (2) Large B makes the critical point N*
shift right. Before goodput collapse, that is, when the number
of senders N is smaller than the critical point N*, the goodput
largely depends on BTTO, while as N > N*, goodput is
mainly determined by the frequency of BHTO, which will
severely decrease TCP goodput. Larger buffer can make N*
shift right since it can cache more packets. Therefore, larger

B delays the onset of goodput collapse. (3) After the critical
point N* , goodput becomes larger as N increases. TCP incast
suffers quite low goodput when N equals to N*. However, the

goodput slowly increases as N becomes larger. This can be
explained using our model. Transmitting a block spends time

B yB TF . T = To + yP N-N*+l' In our analytIcal model, a TO N-N*+l
period lasts only one timeout, namely, its duration equals to
To. Hence, when N becomes large, although the unlucky flows
spend more time transmitting their blocks, the time taken by
the TO period keeps unchangeable. Thus, larger N increases
TB a little. While the number of senders N increases. Hence,
goodput slowly increases. In fact, when N becomes very large,
packets will likely be lost in the TO periods due to more severe
bandwidth contention, that is, a TO period will possibly take
longer time than To. In our model, we do not take this longer
TO into consideration, so the analytical results slightly deviate
from the simulation data when N becomes quite large.

2) Different Synchronized Data Block Sb: Figures 10-12
plot the proposed model and simulation results with different

1384

block size Sb. We can see that the goodput becomes larger
when the block size increases. But large block size has little
impact on the onset of goodput collapse. According to our
model, block size Sb is irrelative to the maximum window
size. Therefore, the goodput of a CA period does not vary.
When N < N*, the probability of a TO period has a negative
correlation with LCM(yE , yB). Hence, when Sb becomes
large, the probability of TO will have a decline tendency and
consequently the goodput will increase. When N > N*, since
in average one TO happens in each block. Thereby, when block
size becomes large, the ratio of the time wasted by a TO
period to the time spent by unlucky flows transmitting packets
becomes smaller. As a result, the goodput increases.

B. With Window Limitation

Figure 13 shows the impact of the advertised window of
the receiver on the goodput. We select a typical Wi = 10,
According to Eq. (31)-(34), we get that

(1) As N = 1, WI < of, hence, Gl = NSJJWI
.

(2) As N E [2, 8], 0: < WI < Wm, hence Gl = esp.
9 NS yC (3) As N = 9, WI = Wm, hence Gl = � .

(4) As N > 9, WI > Wm, hence Gl = G.
The results shown in Figure 13 validate that our model is

accurate, and the advertised window WI can directly affect the
goodput if there are Ni flows as well as WI :'S W';;i.

C. Parameter Analysis

N* is a quite important point since it is the critical point
of the goodput collapse. We conduct a series of simulations
with different N, B, e, and solve the value of N* using our
analytical model. The results are presented in Figure 14-15.
We can see that the critical point is mainly related to B, while
the bandwidth of the bottleneck link has little impact on it.
This is because the window of a flow becomes larger as e
increases with a specific N, the number of served packets
also increases during the first round of a block. These two
impacts just counteract and thus larger e does not enlarge the
probability of BHTO with a particular N. Therefore, larger e
does not delay the onset of goodput collapse. With respect to
buffer size B, larger buffer can temporarily keep more packets
to prevent them from being dropped. Hence, larger B can
delay the onset of goodput collapse.

V. CONCLUSIONS

In this paper, we build an analytical model to understand
the essential causes of TCP incast, which is a crucial issue in
data center networks due to its catastrophic performance dete­
rioration as the number of senders becomes large. The existing
investigations on it try to find a good solution to TCP incast.
However, they either need high cost, such as substituting TCP
by UDP, or only can temporarily mitigate goodput drop, such
as reducing RTOmin. To solve TCP incast substantially, the
fundamental reasons should be firstly explored. In our work,
we find that two types of TOs, BTTO and BHTO, significantly
degrade the TCP goodput. The critical point between them is
the onset of TCP goodput collapse. BTTO, which is caused

by one of the last three packets in a block being dropped,
happens when the number of concurrent senders is small.
While BHTO is caused by dropping the first window of a block
totally. It happens when the number of concurrent senders
becomes large. At last, we validate the proposed model by
comparing it with simulation data, finding that our model well
characterizes the goodput of TCP incast. The insights provided
by the proposed model will be helpful for developing more
effective solutions to TCP incast at low cost.

ACKNOWLEDGEMENT

This work is supported in part by the National Natural Sci­
ence Foundation of China (NSFC) under Grant No.60773138,
60971102, the National Grand Fundamental Research Pro­
gram of China (973) under Grant No. 2oo9CB320504,
201OCB328105, and National Science and Technology Major
Project of China (NSTMP) under Grant No. 2OO9ZX03006-
001-003 and 2009ZX03006-003-01.

REFERENCES

[1) A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, "Measurement and Analysis of TCP
Throughput Collapse in Cluster-based Storage Systems," in Proc. of
FAST, 2008.

[2) V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibsonl, and B. Mueller, "Safe and Effective Fine­
grained TCP Retransmissions for Datacenter Communication," in Proc.
of ACM SIGCOM, Aug.2009, pp. 303-314.

[3) Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. DJoseph, "Understanding
TCP Incast Throughput Collapse in Datacenter Networks," in Proc. of
ACM WREN, 2009.

[4) D. Nagle, D. Serenyi, and A. Matthews, "The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage," in Proc.
of the 2004 ACMREEE conference on Supercomputing, 2004, pp. 53-62.

[5) M. Abd-El-Malek, W. Courtright, C. Cranor, G. R. Ganger, 1. Hendricks,
A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,
S. S. andJohn D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie, "Ursa
Minor: Versatile Cluster-based Storage," in Proc. of FAST, 2005.

[6) S. Ghemawat, H. Gobioff, and S. Leung, "The Google File System," in
Proc. of SOSP, 2003, pp. 29-43.

[7) "Presentation Summary-high Performance at Massive Scale
Lessons Learned at Facebook." [Online). Available:
http://idleprocess.wordpress.coml2009/11/24/presentation-summary­
high-performance-at -massive-scale-lessons-leamed-at -facebookl

[8) 1. Dean, S. Ghemawat, and G. Inc, "Mapreduce: Simplified data pro­
cessing on large clusters," in Proceedings of OSDI, 2004.

[9) C. Minkenberg, A. Scicchitano, and M. Gusat, "Adaptive Routing for
Convergence Enhanced Ethernet," in Proceedings of HPSR, 2009, pp.
34-41.

[10) J.Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP
Throughput: A Simple Model and its Empirical Validation," in Proc.
of ACM SIGCOM, Sep.l998, pp. 303-314.

[11) N. Parvez, A. Mahanti, and C. Williamson, "An Analytic Throughput
Model for TCP NewReno," in Proc. of IEEElACM TON, vol. 18, no. 2,
April 2010, pp. 448-461.

[12) E. Altman, K. Avrachenkov, and C. Barakat, "A Stochastic Model
of TCPIIP with Stationary Random Losses," in Proceedings of ACM
SIGCOMM, Aug. 2000, pp. 231-242.

[13) M. Goyal, R. Guerin, and R. Rajan, "Predicting TCP Throughput from
Non-invasive Network Sampling," in Proceedings of IEEE INFOCOM,
Mar. 2002, pp. 180-189.

[14) A. Kumar, "Comparative Performance Analysis of Versions of TCP in
a Local Network with a Lossy Link," in IEEElACM TON, vol. 6, no. 4,
Aug. 1998, pp. 485-498.

[15) S. Floyd, T. Henderson, and A. Gurtov, "The NewReno Modification to
TCP's Fast Recovery Algorithm," in RFC 3782, Apr. 2004.

1385

