
978-1-4799-3360-0/14/$31.00 c©2014 IEEE

Delay Guaranteed Live Migration of Virtual
Machines

Jiao Zhang, Fengyuan Ren and Chuang Lin

Dept. of Computer Science and Technology, Tsinghua University, Beijing, China

Tsinghua National Laboratory for Information Science and Technology, Beijing, China

Email: {zhangjiao08, renfy, clin}@csnet1.cs.tsinghua.edu.cn

Abstract—The proliferation of cloud services makes virtual-
ization technology more important. One important feature of
virtualization is live Virtual Machine (VM) migration, which can
be employed to facilitate load balancing, fault management and
server maintenance etc.. Two main metrics of evaluating a live
VM migration mechanism are total migration time and downtime.
The existing literature on live VM migration mainly focus on
designing migration mechanisms to shorten these two metrics or
making a tradeoff between them. Few of them can be applied to
the applications with delay requirements, such as, delay-sensitive
web services or a VM backup process that needs to be done
in a specific time. This will not only negatively impact the user
experiences, but also reduce the profit of cloud service providers.
Besides, the frequently varied bandwidth required by the widely
used pre-copy mechanism is difficult to be provided by current
network technologies. In this work, we theoretically analyze how
much bandwidth is required to guarantee the total migration
time and downtime of a live VM migration. We first propose
a deterministic-based model as a simple example, then assume
that the dirtying frequency of each page obeys the bernoulli
distribution. At last, we analyze the statistic features of the typical
workload running in a VM and build a reciprocal-based workload
model, and theoretically give the required bandwidth value to
satisfy the performance metrics of a live VM migration. The
experimental results demonstrate that the bandwidth obtained
from the reciprocal-based model can guarantee the expected total
migration time and downtime.

Index Terms—Virtualization, Live Migration, Delay, Band-
width

I. INTRODUCTION

Virtualization has been firstly employed in IBM VM/370

[1], [2]. The technology can increase hardware utilization

by allowing multiple isolated Operating System (OS) to run

in the same host. Migration allows a running OS to be

moved from one physical host to another. The combination

of virtualization and migration, VM migration, is increasingly

utilized in today’s multi-tenant cloud data centers. VM mi-

gration brings lots of benefits. It facilitates to balance load

and consolidate servers by migrating VMs out of overloaded

or underloaded physical hosts. Also, once a server requires

hardware maintenance or software update, the services running

on it can be migrated to others [3], [4]. In the multi-tenant

clouds, resource can be redistributed through live migration to

allow more tenants [5], [6].

There are two main methods of migrating a VM: offline

migration and online/live migration. If the offline migration

is conducted, the services running on the migrated VM will

terminate during the whole migration process, while live

migration mechanisms can keep the services on the migrated

VM alive during most of the migration process. The main

advantages of live migration are that it not only endows the

benefits of VM migration, but also imposes little interruption

on the running services [7].

Two important metrics are used to evaluate the performance

of a live VM migration mechanism [4]. 1) Total migration
time, which is the duration of the whole process of a live

migration. 2) Downtime, which is the interruption period of the

services running in a migrated VM. The performance of live

VM migration is mainly related to two factors: page dirtying

rate and bandwidth for migration [8]. The page dirtying rate

depends on the workload running in the migrated VM, which

cannot be changed. Hence, allocating proper bandwidth is

critical to improve the performance of live migration of VMs.

At present, the widely employed live migration algorithm

is pre-copy mechanism proposed by C. Clark [4], in which

a heuristic bandwidth allocation mechanism is designed. The

main idea is that the bandwidth used for migration is the

summation of the page dirtying rate plus a constant increment.

Since the page dirtying rate varies as the dirty pages change

and the constant bandwidth increment cannot adapt to dy-

namic migrating scenarios, the heuristic bandwidth allocation

algorithm fails to provide guaranteed performance. Previous

studies have demonstrated that the downtime varies consider-

ably among applications with different memory usage patterns,

ranging from 60 milliseconds when migrating a Quake game

server [4] to 3 seconds in the case of High-Performance

Computing benchmarks [9].

The uncontrollable total migration time and downtime could

bring much penalty. For example, in multi-tenant clouds,

sometimes the VMs allocated to the current tenants need to

be migrated to make more efficient use of substrate resources

and thus allow more tenants [5], [6]. Too large total migration

time prolongs the wait time of a new tenant. Also, large

downtime will affect the Service Level Agreement (SLA) of

services and reduce the profit of the could service providers

[10]. Furthermore, the required bandwidth changes in each

iteration in the pre-copy mechanism. During the last several

rounds, the bandwidth likely varies at the interval of no more

than 1 second, which is so small that the current network

technologies hardly ensure the required bandwidth.

To overcome the drawbacks of unstable performance of the

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 574

2

pre-copy live VM migration mechanism, the page dirtying rate

pattern should be investigated and be taken into consideration

to determine a constant bandwidth value during the pre-copy

phase. Then some existing bandwidth guarantee mechanisms

can be leveraged to reserve the bandwidth and thus provide

guaranteed performance.

In this work, we theoretically analyze how much bandwidth

should be provided to guarantee the total migration time and

downtime of a live VM migration. First, a simple example is

given under the assumption that the dirtying probability of all

the pages is deterministic. Then the dirtying probability of all

the pages is assumed to obey the bernoulli distribution [11]. At

last, the statistic features of the typical workloads are analyzed

and a reciprocal-based page dirtying model is proposed. The

bandwidth for live VM migration with delay requirements are

obtained for all the three models.

Our mechanism is evaluated using experiments. The results

show that the bandwidth obtained from the reciprocal-based

model can guarantee the delay requirements of both the total

migration time and downtime, while the deterministic-based

and bernoulli-based models are not proper.

The remainder of the paper is organized as follows. The fol-

lowing section describes the related work and motivation. The

problem addressed in the work is formalized in Section III.

The required bandwidth to guarantee the delay requirements

of live VM migrations with the same or different page dirtying

distribution functions is theoretically deduced in Section IV

and Section V, respectively. In Section VI, we validate our

model using experiments. At last, the paper is concluded in

Section VII.

II. RELATED WORK AND MOTIVATION

A. Related Work

1) Pre-Copy Migration: C. Clark et al. proposed a live VM

migration mechanism, named pre-copy migration, in which the

OS execution is not interrupted during most of the transfer

[4]. In their algorithm, a tradeoff between the downtime and

the total migration time is made through dynamic bandwidth

allocation. In the first round, all the pages are transferred using

the minimum bandwidth. The bandwidth used for subsequent

rounds equals the summation of the dirtying rate of the

previous round and a constant increment, (eg. 50Mbps in

[4]). To avoid too much bandwidth is used for migration, a

maximum bandwidth value is given. The transmission of the

live migration employs TCP protocol.

The migrated VM stops its running applications, and the

stop and copy phase starts if one of the four conditions

satisfies: a) The transmission rate reaches up to the maximum

bandwidth and the number of pages required to be sent in the

next iteration is larger than that of the current iteration. b) The

iteration number exceeds the maximum allowed number, e.g.,

30. c) The number of dirty pages at the end of the current

iteration is smaller than 50 pages. d) The number of the total

sent pages exceeds the maximum allowed value.

The performance of the pre-copy based live migration

algorithm is closely related to the three parameters: the min-

imum, maximum bandwidth and the bandwidth increment.

Their default values are 100 Mbps, 500 Mbps and 50 Mbps,

respectively. It is not clear how to change the three parameters

in different network environments. Besides, there is no perfor-

mance guarantee in terms of the downtime and total migration

time.

2) Performance of the Pre-Copy Mechanism: In [3], the im-

pact of the pre-copy live migration algorithms on applications

running inside migrated VMs is evaluated. The experimental

results show that in most cases, the overhead caused by

migration is acceptable but cannot be disregarded, especially in

the systems where service availability and responsiveness are

governed by strict SLAs. However, the work does not present

how to satisfy the SLAs of applications.

S. Akoush et al. show that link bandwidth and page dirtying

rate are the major factors impacting migration behavior, and

highlight the migration performance can vary considerably

with different workload. They present two simulation models

that can predict the performance of VM migration within

90% accuracy for both synthetic and real-world benchmarks

[8]. However, how to employ the prediction results to guide

the resource allocation and thus satisfy the requirements of

services is not discussed.

D. Breitgand et al. proposed a model to quantify the trade-

off between minimizing the copy duration and maintaining

an acceptable quality of service during the pre-copy phase

[11]. The dirty frequency of all the pages are assumed to obey

bernoulli distribution. In [15], F. Checconi et al. introduced

a theoretical framework for estimating the variability of the

duration of the overall migration time and downtime under

the live migration policy proposed in [4]. The work shows

an optimal ordering of pages under the assumption that the

bandwidth is constant and the dirty frequency of each page

follows the bernoulli distribution. Since the optimal order is

difficult to be scheduled in practice, two heuristic migrating

policies are proposed. However, no performance bound can be

guaranteed by the proposed policies.

B. Motivation

The pre-copy algorithm works well at the premise that the

network can provide frequently varied bandwidth. Figure 1

plots the bandwidth taken by the migration process without

any background traffic. The experiment is conducted in a

testbed which is comprised of 4 DELL OptiPlex 360 PCs

with Intel 2.93 GHz dual-core CPU, 6 GB DRAM, and 300

GB hard disk, and a HP ProCurve 2910al Ethernet switch.

The system is XEN-3.4.3 [12] with kernel 2.6.18.8-xen [13].

The migrated Domain-U VM has 400 MB memory and is

compiling kernel during the migration process. We can see

that without any background traffic, the variation of the

transfer rate is similar to the results in [4], which starts from

the minimum sending rate 100 Mbps, and then increases to

the maximum sending rate 500 Mbps. After five iterations,

the pre-copy phase terminates and the stop and copy phase

begins. The total migration time is about 34 seconds and the

downtime is 605 microseconds, which is acceptable. However,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

575

3

0 5 10 15 20 25 30
0

100

200

300

400

500

600
DownTime: 605 ms →

Time (Second)

S
e

n
d

 R
a

te
 (

M
b

p
s)

Kernel Compiling

Fig. 1. Send rate variation during migrating
a VM which is compiling kernel without any
background traffic.

0 20 40 60 80
0

20

40

60

80

100

↓

DownTime: 9597 ms

Time (Second)

S
e

n
d

 R
a

te
 (

M
b

p
s)

Kernel Compiling

Fig. 2. Send rate variation during migrating a
VM which is compiling kernel with 900 Mbps
UDP background traffic.

0 100 200 300 400 500
0

5

10

15

20

25

30

↓

DownTime: 42833 ms

Time (Second)

S
e

n
d

 R
a

te
 (

M
b

p
s)

Kernel Compiling

Fig. 3. Send rate variation during migrating a
VM which is compiling kernel with 40 TCP flows
background traffic.

the bandwidth changes quite frequently at the last several

rounds. For example, the 4-th and 5-th iterations last only

no more than half a second.

In data centers, except from the live migration traffic, there

are many other kinds of traffic, which contends for bandwidth

and thus influences the performance of live migration.

With UDP background traffic. For example, web search

is an important service in data centers and attracts a lot of

attention recently [16]–[20]. To achieve low latency, the web

search traffic is given higher priority to obtain the required

bandwidth [17], [18] or is scheduled first at the switches [20],

[21]. It is possible that most of the link bandwidth is taken by

the deadline-aware flows. To emulate this kind of situation, we

let two servers generate 900 Mbps UDP background traffic and

then migrate a VM that has 400 MB memory and is compiling

kernel. Figure 2 plots the send rate values of each iteration.

The total migration time and downtime increases to 80 seconds
and 9.6 seconds, respectively, which is quite large.

Contending with other TCP flows. As the number of flows

increases, the bandwidth taken by the live migration process

becomes quite small even if all the flows fairly contend for the

link bandwidth. In data centers, a rack typically has 40 servers.

Figure 3 shows the send rate variation during the live migration

with 40 TCP background flows. Since the live migration flow

competes the bandwidth with the 40 TCP flows, the bandwidth

taken by the live migration process is only about 20 Mbps.

Thus, the total migration time achieves up to more than 600
seconds, and the downtime increases to 58.8 seconds.

The pre-copy mechanism assumes that the network can

provide sufficient bandwidth for live migration of VMs. Oth-

erwise, the total migration time and downtime will possibly

become quite large as shown in Figures 2 and 3. However,

it is not easy to provide the frequently varied bandwidth.

The live migration results shown in both [4] and Figure 1

indicate that the bandwidth is changed every about 1 second

during the last several rounds of the live migration. However,

the network needs some time to reserve the new bandwidth

value. IntServ [22] is designed to provide bandwidth guarantee

services in Internet. RSVP protocol [23] is used to establish the

switch state for the varied bandwidth and the switches utilize

the packet scheduling mechanism, such as WFQ, priority-

queue, to guarantee bandwidth. SecondNet employs priority-

queue to provide bandwidth guarantee in data center networks

[6]. From the experiments in SecondNet, we can infer that

one variation of the reserved bandwidth needs about several

seconds. Therefore, it is unpractical to provide the frequently

changed bandwidth using the present network technologies.

Of course, the maximum bandwidth can be reserved during

the whole migration process. However, how much the maxi-

mum bandwidth should be? A large value will cause much

bandwidth wastage, while a small value will lead to long

migration time. In [24], Y. Wang et. al. also found that the

migration delay dramatically increases due to the bandwidth

contention with other traffic. They suggest that the operators

should provide separate bandwidth for the migration traffic.

This method will not only incur bandwidth wastage but also

brings management overhead. Therefore, it is necessary to

determine a proper bandwidth value to satisfy the requirement

of the total migration time and downtime before the migration

starts. Correspondingly, for users, the SLA of services can

be guaranteed. For network operators, the reservation of the

bandwidth becomes practical and incurs less cost. For cloud

service providers, loss of profit can be reduced. For example,

Amazon EC2 service provider will pay the customers a credit

card if the annual uptime percentage drops below 99.95% for

the service year [10].

III. PROBLEM DESCRIPTION

We only consider the pre-copy based live migration algo-

rithm. The bandwidth during the pre-copy phase is constant. In

the stop-and-copy phase, the bandwidth equals the maximum

bandwidth determined by operators as stated in [4]. Next we

first list the main denotations, then present the formalized

problem.

A. Denotations

Let N be the total number of pages of the virtual machine.

Ni(i ≥ 1) denotes the number of pages transferred in the

i-th round of the pre-copy phase. Especially, N1 = N . Bp

represents the bandwidth provided by the network in the pre-

copy phase in unit of pages/second. Let Bm be the maximum

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

576

4

bandwidth during the stop-and-copy phase. k is the total

number of iterations during the pre-copy phase.

Ttot and Tdwn represents the expected total migration

time and downtime of the live migration, respectively. T̃tot

and T̃dwn represents the practical total migration time and

downtime of the live migration, respectively. Fi(t) stands for

the distribution function of the interval between two write

operations of page i.

B. Problem Formalization

The problem studied in this work can be formalized as

given the maximum bandwidth Bm, minimizing the bandwidth

during the pre-copy phase, Bp, to satisfy the total migration

time Ttot and downtime Tdwn.

min Bp (1)

s.t.

{
T̃tot ≤ Ttot

T̃dwn ≤ Tdwn

(2)

Based on the pre-copy live migration algorithm, the practi-

cal total migration time and downtime can be obtained⎧⎪⎨
⎪⎩
T̃dwn = Nk+1

Bm

T̃tot =

k∑

i=1
Ni

Bp
+ T̃dwn

(3)

We can see that the critical problem is to compute the

number of pages in each round Ni. Next, we will discuss

how to determine Ni in two cases.

IV. DIRTYING DISTRIBUTION FUNCTIONS ARE THE SAME

Let F (t) be the dirtying distribution function of one page,

that is, F (t) = Prob.{Dirtying interval < t}. If all the

pages have the same dirtying distribution function, then we

have F1(t) = F2(t) = ... = FN0
(t) = F (t). Thus, the

number of dirty pages Ni+1(i ≥ 1) has no relation to the

transmission order. It can be computed from the dirtying

distribution function and Ni.

Next, we will first assume F (t) obeys the deterministic

distribution, then illustrate how to calculate Bp if the dirtying

distribution function follows the bernoulli distribution.

A. Deterministic Distribution Function

Let T be the parameter of the deterministic distribution

function, that is,

F (t) =

{
0 t < T

1 t ≥ T
(4)

Then the i-th transferred page will become dirty when the

(TBp + i)-th page is finished. Therefore, after N pages being

transferred in the first round, TBp pages are clean, and the

others N − TBp become dirtied. At the next round, once a

page is transferred, a page will get dirty. Thus we have

Ni =

{
N i = 1

N − TBp i > 1
(5)

Based on the above analysis, we can get that the optimal

round number is 1, and the pre-copy phase should stopped

after transmitting TBp pages. Under this strategy, the practical

total migration time and downtime is{
T̃dwn =

N−TBp

Bm

T̃tot =
TBp

Bp
+ T̃dwn

(6)

To satisfy the delay guarantee of Ttot and Tdwn, we have{
N−TBp

Bm
≤ Tdwn

T +
N−TBp

Bm
≤ Ttot

(7)

Therefore, the bandwidth during the pre-copy phase is

Bp ≥ max{N − TdwnBm

T
,
N − (Ttot − T)Bm

T
} (8)

B. Bernoulli Distribution Function
Let p be the dirtying probability in each time interval

1
Bp

, that is, the time of transmitting a page. We can get the

following theorem.
THEOREM 1: The expected number of pages transferred

in the (i+ 1)− th round is

Ni+1 =

⎧⎨
⎩
N i = 0

N − 1−(1−p)
∑i

j=1 Nj

p i ≥ 1
(9)

Proof: We prove this theorem using the inductive method.
1) When i = 0, the number of transferred pages in the first

round is N1 = N .
2) When i > 0, we first consider the second round. The

probability that the first page transferred in the first round

keeps clean at the end of the round is (1−p)N1−1, the second

is (1− p)N1−2, etc. Hence, we can get that

N2 = N −
N1∑
j=1

(1− p)N1−j = N − 1− (1− p)N1

p
(10)

3) Computing Ni+1 under the assumption that Ni = N −
1−(1−p)

∑i−1
j=1

Nj

p ,(i ≥ 2). In the (i + 1) − th round, the pages

needed to be transferred consists of two types:

• The pages transferred in the i − th round become dirty

again. The expected number is
∑Ni

l=1(1− (1− p)Ni−l).
• The pages not transferred in the i − th round become

dirty. The expected number of dirty pages at the end of

the i− th round is (N −Ni)(1− (1− p)Ni).

Therefore, we can obtain that

Ni+1 = Ni −
Ni∑
l=1

(1− p)Ni−l + (N −Ni)(1− (1− p)Ni)

= N −
Ni∑
l=1

(1− p)Ni−l − (N −Ni)(1− p)Ni

= N −
Ni∑
l=1

(1− p)Ni−l − 1− (1− p)
∑i−1

j=1 Nj

p
(1− p)Ni

= N − 1− (1− p)
∑i

j=1 Nj

p
(11)

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

577

5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Dirty Frequency (Per Second)

C
D

F
 (

P
a

g
e

 A
m

o
u

n
t)

SPECcpu (model)
SPECcpu (exp)

Fig. 4. CDF of SPECcpu

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Dirty Frequency (Per Second)

C
D

F
 (

P
a

g
e

 A
m

o
u

n
t)

Kernel Compiling (model)
Kernel Compiling (exp)

Fig. 5. CDF of kernel compiling

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Dirty Frequency (Per Second)

C
D

F
 (

P
a

g
e

 A
m

o
u

n
t)

Data Copy (model)
Data Copy (exp)

Fig. 6. CDF of data copy

Combining Eqs. (10)-(11), THEOREM 1 can be proved.

Let k be the number of rounds in the pre-copy phase. To

guarantee Ttot and Tdwn, the following inequalities should be

satisfied. {
Nk+1 ≤ TdwnBm∑k

j=1 Nj ≤ (Ttot − Tdwn)Bp

(12)

According to THEOREM 1, we have⎧⎨
⎩N − 1−(1−p)

∑k
j=1 Nj

p ≤ TdwnBm∑k
j=1 Nj ≤ (Ttot − Tdwn)Bp

(13)

From Eq. (13), we have

N − 1− (1− p)
∑i

j=1 Nj

p

≥ N − 1− (1− p)(Ttot−Tdwn)Bp

p

(14)

Combining Eqs. (13) and (14), we obtain

N − 1− (1− p)(Ttot−Tdwn)Bp

p
≤ TdwnBm (15)

Let θ be the probability that a page becomes dirty during

a unit time. Then (1− θ) is the probability that a page keeps

clean during a unit time. Therefore, during 1
Bp

time units, the

probability that a page keeps clean is 1 − p = (1 − θ)
1

Bp .

Combing with Eq. (15), we can get

N − 1− (1− p)(Ttot−Tdwn)Bp

p

= N − 1− (1− θ)(Ttot−Tdwn)

1− (1− θ)
1

Bp

≤ TdwnBm

(16)

From Eq. (16), Bp should be

Bp ≥ ln(1− θ)

ln(1− 1−(1−θ)(Ttot−Tdwn)

N−TdwnBm
)

(17)

Given a specific scenario, N,Ttot, Tdwn and Bm are deter-

mined. The only parameter θ, i.e., the probability that a page

becomes dirty per unit time, can be measured in practice.

V. DIRTYING DISTRIBUTION FUNCTIONS ARE DIFFERENT

In this situation, since the dirtying frequency of each page

is different, the number of dirty pages at the end of a

round is related to the transmission order. Various ordering

functions lead to different Ni+1(i > 0) and thus different

bandwidth Bp is required to guarantee Ttot and Tdwn. Since

the pre-copy mechanism does not take the transmitting order

into consideration, we will compute the expected required

bandwidth in this section.

A. Dirtying Distribution Function

If the dirtying probability of each node is different, then we

need to consider the dirtying distribution of the whole memory.

Three types of workloads are investigated using experiments

to study the dirtying pattern of the memory pages.

• SPECcpu2006 aims to evaluate the performance of sys-

tems on a known CPU-intensive workload, with emphasis

on the system’s processor, memory hierarchy and com-

piler [25]. The benchmark can represent the class of

compute-intensive workload in data center networks.

• Data Copy represents the applications that need to trans-

fer data. In data centers, communication between servers

is quite frequent, and many servers need to transfer data

to each other to cooperate or keep data consistent.

• Kernel Compiling is a representation of development

workload. In our experiment, the Linux 2.6.28.10 kernel

is compiled. The workload involves moderate disk I/O

and frequent memory access.

Every 10 milliseconds, the function xc shadow control()
with XEN DOMCTL SHADOW OP CLEAN mode is called

to copy the dirty page bitmap to to send and then clear the

dirty bitmap. Then we can see which pages are dirtied during

this interval. The total sampling time is 10 seconds.

Through investigating the dirtying frequency of all the

pages, we found that the distribution of the dirtying pages’

frequency can be approximately modeled as a function G(x) =
1 − β

x , (x > 0), in which β is the parameter. Thus, the

probability density function is g(x) = G′(x) = β
x2 . We can get

the parameter of β using the least square method [26], that is,

make the summation of the square of the difference between

the model and the sampled data as small as possible. Figures

4-6 plot the CDF of the dirty frequency of pages when the VM

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

578

6

is running the SPECcpu benchmark, copying data or compiling

kernel, respectively. We can see that G(x) well characterizes

the distribution of dirtying pages with different workloads.

This model is referred to as reciprocal-based model.

B. Required Bandwidth

Denote P (R, i) as the probability that page i transferred in

round (R−1) becomes dirty at the start of round R. Since the

dirtying probability is related to the ID of the transferred page,

applying the full probability formula, we can obtain P (2, 1),
i.e., the probability that the first transferred page is dirty at the

start of the second round

P (2, 1) =

∫ ∞

x=xmin

g(x)× Pd(x)dx (18)

where Pd(x) represents the probability that the page with

dirtying frequency x becomes dirty again after transmission.

The duration from the first page being transferred to the end of

the first round is RT1 = N−1
Bp

. Thus, if the dirtying frequency

of one page is larger than 1
RT1

=
Bp

N−1 , the page will become

dirty at the end of the first round. Thus, eq. (18) is

P (2, 1) =

∫ Bp
N−1

x=xmin

g(x)× 0dx+

∫ ∞

x=
Bp

N−1

g(x)× 1dx

=

∫ ∞

x=
Bp

N−1

β

x2
dx =

β(N − 1)

Bp

(19)

Similarly, the probability that the i-th transferred page

becomes dirty at the end of the first round is

P (2, i) =
β(N − i)

Bp
(20)

Therefore, we can obtain that at the start of the second

round, the expected number of dirty pages is

N2 =

N∑
i=1

P (2, i) =
βN(N − 1)

2Bp
=

βN1(N1 − 1)

2Bp
(21)

However, we cannot infer that the number of dirty pages

needed to be transferred during the j-th round is Nj =
βNj−1(Nj−1−1)

2Bp
. This is because the distribution of the pages’

dirtying frequency will change after every round since the

slowly dirtying pages are filtered out. Therefore, the proportion

taken by the slowly dirtying pages gets smaller. As a result,

the parameter β of the CDF function grows. Let βj be the

parameter of the CDF of the dirtying pages at the start of the

j-th round (β1 = β). Clearly, it is reversely proportional to

Nj . Thus, we could let βj =
α
Nj

. Nj can be obtained as

Nj =
α(Nj−1 − 1)

2Bp

=
αj−1(N − 1)

(2Bp)j−1
− (

α

2Bp
)j−2 − (

α

2Bp
)j−3 − ...− α

2Bp

(22)

If a VM can be successfully migrated, then the number of

dirty pages will decrease as the number of round increases.

Thus, α
2Bp

should be less than 1. We can ignore the power

of (α
2Bp

) items as they are quite small compared with the

hundreds of memory pages. Therefore, the number of trans-

ferred pages in the j-th round is Nj = (N − 1)(α
2Bp

)j−1.

Correspondingly, the number of the transferred pages at the

pre-copy phase is

Np =

k∑
j=1

Nj = (N − 1)
1− (α

2Bp
)k

1− α
2Bp

(23)

Thus, to satisfy the delay requirement of the total migration

phase and the downtime requirment, we have⎧⎨
⎩(N − 1)

1−(α
2Bp

)k

1− α
2Bp

≤ (Ttot − Tdwn)Bp

(N − 1)(α
2Bp

)k ≤ TdwnBm

(24)

From the above second inequality, we can get that k ≤
log(

TdBm
N−1)

log(α
2Bp

) . Let

k =
log(TdBm

N−1)

log(α
2Bp

)
(25)

According to the first inequality in (24), we can obtain that

Bp ≥ α

2
+

N − 1− TdwnBm

Ttot − Tdwn
(26)

Since β1 = α
N1

, we have α = βN . β can be obtained

through fitting the sampled dirtying frequency data. Then the

value of Bp and k can be calculated.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

To validate that the computed bandwidth given specific

delay requirements can indeed guarantee the delay, we con-

ducted experiments using two Dell Servers connecting to a HP

ProCurve 2910al Ethernet switch. The end hosts run XEN-

3.4.3 [12] system with Linux kernel 2.6.18.8-xen [13].

The live migration command is launched at the user space.

Once the xm migrate command is received by the VM

monitor, it will notify the devices, check whether the memory

is enough for migration, and establish a socket connection

with the target physical host. After the source host receives the

response from the target host, the VM begins to be migrated.

Therefore, the page dirtying frequency can be sampled after

the VM monitor receives the xm migrate command and

before the VM migrating begins. In the following experiments,

we sampled 10 seconds at the interval of 10 microseconds

before one migration. To guarantee that the migrated VM can

get the computed bandwidth, no background traffic is added.

The workload employed to evaluate the effectiveness of

our model is the same as that in Section V-A. The memory

size of the migrated VM is 400 MB. Since the number of

iterations during the pre-copy phase is an integer, The top

integral function ceil is used.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

579

7

0 5 10 15 20
0

100

200

300

400

500
DownTime: 233 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

SPECcpu2006

Fig. 7. Live migration process with Bp = 131
Mbps, Bm = 500 Mbps and k = 2. The delay
requirement is Ttot ≤ 30 s and Tdwn ≤ 0.6 s.

0 5 10 15
0

100

200

300

400

500 DownTime: 592 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Kernel Compiling

Fig. 8. Live migration process with Bp = 166
Mbps, Bm = 500 Mbps and k = 3. The delay
requirement is Ttot ≤ 30 s and Tdwn ≤ 0.6 s.

0 5 10 15
0

100

200

300

400
DownTime: 273 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Data Copy

Fig. 9. Live migration process with Bp = 208
Mbps, Bm = 500 Mbps and k = 4. The delay
requirement is Ttot ≤ 30 s and Tdwn ≤ 0.6 s.

0 2 4 6 8 10 12
0

100

200

300

400
DownTime: 430 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

SPECcpu2006

Fig. 10. Live migration process with Bp =
240 Mbps, Bm = 500 Mbps and k = 2. The
delay requirement is Ttot ≤ 15 s and Tdwn ≤
0.4 s.

0 2 4 6 8 10
0

100

200

300

400

DownTime: 396 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Kernel Compiling

Fig. 11. Live migration process with Bp =
280 Mbps, Bm = 500 Mbps and k = 2. The
delay requirement is Ttot ≤ 15 s and Tdwn ≤
0.4 s.

0 2 4 6 8 10
0

100

200

300

400

500

600 DownTime: 157 ms →

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Data Copy

Fig. 12. Live migration process with Bp = 323
Mbps, Bm = 500 Mbps and k = 3. The delay
requirement is Ttot ≤ 15 s and Tdwn ≤ 0.4 s.

0 2 4 6 8 10
0

200

400

600

800

DownTime: 126 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

SPECcpu2006

Fig. 13. Live migration process with Bp =
341 Mbps, Bm = 900 Mbps and k = 2. The
delay requirement is Ttot ≤ 10 s and Tdwn ≤
0.3 s.

0 2 4 6 8
0

200

400

600

800
DownTime: 301 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Kernel Compiling

Fig. 14. Live migration process with Bp =
377 Mbps, Bm = 900 Mbps and k = 2. The
delay requirement is Ttot ≤ 10 s and Tdwn ≤
0.3 s.

0 2 4 6 8
0

200

400

600

800

DownTime: 185 ms→

Time (Second)

S
en

d
R

at
e

(M
bp

s)

Data Copy

Fig. 15. Live migration process with Bp = 420
Mbps, Bm = 900 Mbps and k = 3. The delay
requirement is Ttot ≤ 10 s and Tdwn ≤ 0.3 s.

B. Results

1) Model Validation: A series of experiments are conducted

in our testbed to evaluate whether the reciprocal-based model

can guarantee the delay requirements of a live VM migration

in different scenarios.

First, given Ttot = 30 s, Tdwn = 0.6 s and Bm = 500 Mbps,

and the migrated VM is running SPECcpu2006 benchmark,

from eq. (25) and (26), the bandwidth during the pre-copy

phase Bp is computed as 131 Mbps and the iteration number

of the pre-copy phase k is 2. Figure 7 shows the evolution of

the send rate of each iteration using the results of the model.

We can see that the pre-copy phase lasts two iterations. The

send rate of each iteration is about Bp = 131 Mbps. After

that, the live migration enters into the stop and copy phase.

The send rate is about Bm = 500 Mbps. The total migration

process lasts about 25 seconds and the downtime lasts 0.233
seconds, which is smaller than Ttot and Tdwn, respectively.

We then let the migrated VM compile kernel or copy data,

the bandwidth during the pre-copy phase is 166 Mbps and

208 Mpbs, respectively, and the number of iterations is 3 and

4. The migration results shown in Figures 8 and 9 show that

the total migration time and downtime can be guaranteed.

Next, we evaluate whether our model works well with

smaller delay requirements. The values of Ttot and Tdwn

decrease to 15 seconds and 0.4 seconds, respectively. Bm

keeps the same value. Using the reciprocal-based model, we

get that Bp = 240 Mbps and k = 2 with SPECcpu benchmark.

Bp value becomes larger compared with that when Ttot = 30

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

580

8

140

160

180
B

p
(M

bp
s)

Bm (Mbps)

500 600 700 800 900

1

2

3

4

5

K
 (

Ite
ra

tio
n

N
um

be
r)

Bp (Tdwn=0.3s)
Bp (Tdwn=0.6s)
Bp (Tdwn=0.9s)
K (Tdwn=0.3s)
K (Tdwn=0.6s)
K (Tdwn=0.9s)

Fig. 16. Given Ttot = 30 seconds, the
relationship between Bp, K, Tdwn and Bm.

0

100

200

300

400

B
p

(M
bp

s)

Tdwn (Second)

0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

K
 (

Ite
ra

tio
n

N
um

be
r)

Bp (Ttot=10s)
Bp (Ttot=30s)
Bp (Ttot=50s)
K (Ttot=10s)
K (Ttot=30s)
K (Ttot=50s)

Fig. 17. Given Bm = 500 Mbps, the relation-
ship between Bp, K, Tdwn and Ttot.

100

150

200

250

300

350

400

B
p

(M
bp

s)

Ttot (Second)

10 20 30 40 50
1

2

3

4

5

K
 (

Ite
ra

tio
n

N
um

be
r)

Bp (Bm=500Mbps)
Bp (Bm=700Mbps)
Bp (Bm=900Mbps)
K (Bm=500Mbps)
K (Bm=700Mbps)
K (Bm=900Mbps)

Fig. 18. Given Tdwn = 0.6 seconds, the relation-
ship between Bp, K, Bm and Ttot.

seconds since the value of Ttot decreases. Figures 10-12 plot

the live VM migration process with smaller delay requirements

in different scenarios. The total migration time with the three

kinds of workload is between 12 and 14 seconds, which

are all smaller than Ttot = 15 seconds. The downtime of

SPECcpu2006 is a little larger than Tdwn. The downtime in

the other two scenarios is smaller than 0.4 seconds.
At last, we evaluate the effectiveness of our model when

the maximum bandwidth, Bm, becomes larger. Figures 13-

15 depict the send rate variation of live VM migration with

Ttot = 10 seconds, Tdwn = 0.3 seconds and higher maximum

bandwidth Bm = 900 Mbps. In the first scenario with

SPECcpu2006 workload, the output of our reciprocal-based

model is that Bp = 341 Mbps and k = 2. Compared with

the result in Figure 10, the value of Bp increases. The curve

in Figure 13 shows that the total migration time is about 10

seconds and the downtime is 0.126 seconds. The downtime

is smaller than the delay requirement of Tdwn. When the

migrated VM is compiling kernel or copying data, the total

migration time is about 9 seconds and the downtime is quite

close to or smaller than the downtime.
2) Model Comparison: The above results demonstrate that

the reciprocal-based model can give proper Bp and k to

guarantee the delay requirements of live migration of VMs.

Due to lack of space, we could not present the experimental

results of all the models. Next we will list the comparison

of the three models in some scenarios. If the results of the

deterministic-based model (eq. (8)) and bernoulli-based model

(eq. (17) are close to the results of reciprocal-based model,

then we can infer that they are also effective.
Table I shows the comparison of the three models. The

maximum bandwidth Bm = 500 Mbps. Clearly, the other

two models give too large bandwidth Bp with SPECcpu 2006

benchmark and kernel compiling workload, while a little small

with data copy workload. In terms of the number of iterations

k, it always equals 1 in the deterministic-based model, while

the bernoulli-based model cannot tell the value of k. In

practice, the pre-copy phase can be terminated either after the

duration of (Ttot − Tdwn) or when the number of dirty pages

is not larger than TdwnBm.
3) Parameters: In this subsection, we will investigate the

relationship among Ttot, Tdwn, Bp, Bm and k with the

reciprocal-based model. Only the results with the workload

TABLE I
MODEL COMPARISON (Bp (MBPS), K)

(Ttot, Tdwn) Workload Deterministic Bernoulli Reciprocal
speccpu (615,1) (565,x) (131,2)

(30,0.6) kernel (2068,1) (1903,x) (166,3)
data copy (218,1) (200,x) (208,4)
speccpu (615,1) (565,x) (147,2)

(20,0.6) kernel (2068,1) (1903,x) (184,2)
data copy (218,1) (200,x) (227,2)
speccpu (647,1) (623,x) (138,2)

(30,0.3) kernel (2175,1) (2097,x) (173,3)
data copy (229,1) (220,x) (216,5)
speccpu (647,1) (623,x) (188,2)

(20,0.3) kernel (2175,1) (2097,x) (230,3)
data copy (229,1) (220,x) (267,3)

of kernel compiling is presented. The results with other

workloads are similar.

Figure 16 plots the required bandwidth Bp and the number

of iterations k during the pre-copy phase with different maxi-

mum bandwidth Bm, three different downtime Tdwn values

and Ttot = 30 seconds. As the maximum bandwidth Bm

increases, both the required bandwidth and the number of

iterations decreases. Besides, given a determined Bm, Bp

and k both become smaller with larger Tdwn. The trend of

the curves is reasonable. Note that the required bandwidth

is between 160 and 180 Mbps, which is not quite large.

Preserving the constant bandwidth during the pre-copy phase

is more practical than changing the bandwidth between 100

Mbps and 500 Mbps. The number of iterations during the pre-

copy phase is between 2 and 4, which is quite small compared

with the maximum allowed number of iterations, 30 rounds,

in XEN.

Figure 17 plots the variation of Bp and k with differ-

ent downtime Tdwn and three different Ttot values given

Bm = 500 Mbps. When Ttot = 10 seconds, the calculated

bandwidth Bp is about 390 Mbps. Bp slightly decreases as

the downtime Tdwn increases since larger downtime indicates

that more pages can be left at the end of the pre-copy phase.

Thus, the pages can be transferred more slowly during the

pre-copy phase. Besides, since Tdwn is quite small, it imposes

little impact on the bandwidth during the pre-copy phase. For

example, if Tdwn increases from 0.3 seconds to 0.4 seconds,

the stop and copy phase can transfer Bm∗(0.4−0.3)=50 Mbits

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

581

9

more traffic. If the pre-copy phase lasts 10 seconds and the

dirtying frequency of the pages keeps the same, the value of

Bp only decreases about 50 Mbps
10 seconds

= 5 Mbits, which is quite

small. The number of k drops as Tdwn grows since the stop

and copy phase can send more pages when Tdwn is larger.

Figure 18 depicts the variation of Bp and k with different

total migration time Ttot and three different maximum band-

width values. The downtime Tdwn is a constant value, 0.6

seconds. Bp declines dramatically with larger total migration

time. This is because the memory size of the migrated VM is

constant, larger total migration time indicates that the transfer

rate Bp can be smaller. While Bm has little impact on Bp. The

reason is similar to why Tdwn has little to do with Bp. The

curves of the number of iterations during the pre-copy phase

rise as the total migration time grows. This is because as Ttot

becomes larger, Bp decreases. Correspondingly, one iteration

lasts more time and more pages will become dirty again at

the end of one iteration. Since the downtime is constant, more

iterations are needed to ensure that the number of pages to

be transferred during the stop and copy phase will not exceed

Bm × Tdwn.

VII. CONCLUSIONS

Pre-copy is a widely used live migration mechanism. It

requires frequently varied transfer bandwidth, which brings

great challenges to the network operators. Besides, the live

migration mechanism cannot guarantee delay. In this work,

we theoretically determine the proper bandwidth to guarantee

the total migration time and downtime requirements of live mi-

gration of VMs. We first assume that the dirtying distribution

function of all the pages follows the deterministic distribution

to give a simple example, then the bandwidth is determined

under the premise that the dirtying distribution function of all

the pages obeys the bernoulli distribution. At last, we assume

that the dirty frequency of each page is different and the CDF

of the pages’ dirtying frequency is a reciprocal function. The

experimental results indicate that the reciprocal-based model

well characterizes the dirtying frequency of the memory pages.

Based on the results of the reciprocal-based model, the delay

bound of live migration can be guaranteed. The relationship

between different parameters are also analyzed.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the anonymous re-

viewers for their constructive comments. This work is sup-

ported in part by the National Basic Research Program of

China (973 Program) under Grant No. 2014CB347800 and

2010CB328105, the National Natural Science Foundation of

China (NSFC) under Grant No. 61225011, 60932003 and

61003226.

REFERENCES

[1] P. H. Gum, “System/370 Extended Architecture: Facilities for Virtual
Machines,” IBM Journal of Research and Development, vol. 27, no. 6,
pp. 530–544, 1983.

[2] L. Seawright and R. MacKinnon, “VM/370–A Study of Multiplicity and
Usefulness,” IBM Systems Journal, vol. 18, no. 1, pp. 4–17, 1979.

[3] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual
Machine Live Migration in Clouds: A Performance Evaluation,” Cloud
Computing, pp. 254–265, 2009.

[4] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live Migration of Virtual Machines,” in USENIX NSDI,
2005, pp. 273–286.

[5] Minlan Yu and Yung Yi and Jennifer Rexford and Mung Chiang,
“Rethinking Virtual Network Embedding: Substrate Support for Path
Splitting and Migration,” ACM SIGCOMM CCR, vol. 38, no. 2, pp.
17–29, 2008.

[6] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: a Data Center Network Virtualization Architec-
ture with Bandwidth Guarantees,” in ACM CoNEXT, 2010, pp. 15–28.

[7] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, “Xen 3.0 and the Art of Virtualization,”
in Linux symposium, 2005, pp. 65–77.

[8] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper, “Predicting
the Performance of Virtual Machine Migration,” in IEEE MASCOTS,
2010, pp. 37–46.

[9] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott, “Proactive
Fault Tolerance for HPC with Xen Virtualization,” in the 21st annual
international conference on SuperComputing, 2007, pp. 23–32.

[10] “Amazon EC2 Service Level Agreement.” [Online]. Available:
http://aws.amazon.com/ec2-sla/

[11] D. Breitgand, G. Kutiel, and D. Raz, “Cost-aware live migration of
services in the cloud,” in ACM SYSTOR, 2010.

[12] “Xen Hypervisor 3.4.3 Download.” [Online]. Available:
http://xen.org/download/index 3.4.3.html

[13] “linux-2.6.18-xen.hg.” [Online]. Available:
http://xenbits.xensource.com/linux-2.6.18-xen.hg

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: Towards an Operating System for Networks,” ACM
SIGCOMM CCR, vol. 38, no. 3, pp. 105–110, 2008.

[15] F. Checconi, T. Cucinotta, and M. Stein, “Real-time Issues in Live
Migration of Virtual Machines,” in Euro-Par 2009–Parallel Processing
Workshops. Springer, 2010, pp. 454–466.

[16] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data Center Tcp (DCTCP),” in ACM
SIGCOMM, 2010.

[17] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never
than Late: Meeting Deadlines in Datacenter Networks,” in ACM SIG-
COMM, 2011, pp. 50–61.

[18] J. H. Balajee Vamanan and T. N. Vijaykumar, “Deadline-Aware Data-
center TCP (D2TCP),” in ACM SIGCOMM, 2012.

[19] P. M. David Zats, Tathagata Das and R. H. Katz, “DeTail: Reducing
the Flow Completion Time Tail in Datacenter Networks,” in ACM
SIGCOMM, 2012.

[20] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing Flows Quickly
with Preemptive Scheduling,” in ACM SIGCOMM, 2012.

[21] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “Deconstructing Datacenter Packet Transport,” in ACM
Workshop on HotNet, 2012, pp. 133–138.

[22] R. Braden, D. Clark, and S. Shenker, “RFC 1633 – Integrated Services
in the Internet Architecture: an Overview,” 1994. [Online]. Available:
http://www.ietf.org/rfc/rfc1633.txt

[23] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A
New Resource ReSerVation Protocol,” IEEE Network Magazine, vol. 7,
no. 5, 1993.

[24] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual Routers on the Move: Live Router Migration as a Network-
Management Primitive,” ACM SIGCOMM CCR, vol. 38, no. 4, pp. 231–
242, 2008.

[25] “SPEC CPU2006.” [Online]. Available: http://www.spec.org/cpu2006/
[26] S. J. Miller, “The Method of Least Squares,” in Brown University, 2006.
[27] “OpenFlow.” [Online]. Available: http://www.openflow.org/

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

582

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

