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Abstract—Since TCP Incast has been identified as a catas-
trophic problem in many typical data center applications, a lot
of efforts have been made to analyze or solve it. The analysis
work intends to model Incast problem from certain perspective,
and the solutions try to solve the problem through designing
enhanced mechanisms or algorithms. However, the proposed
models are either closely coupled with particular protocol version
or dependent on empirical observations, and the solutions cannot
eliminate Incast problem entirely because the underlying issues
are not identified completely. There is little work which attempts
to close the gap between “analyzing” and “solving”, and present
a comprehensive understanding.

In this paper, we provide an in-depth understanding of how
TCP Incast problem happens. We build up an interpretive model
which emphasizes particularly on describing qualitatively how
various factors, including system parameters and mechanism
variables, affect network performances in Incast traffic pattern,
but not on calculating the accurate throughput. With this model,
we give plausible explanations why the various solutions for TCP
Incast problem can help, but do not solve it entirely.

Index Terms—TCP Incast; Modeling; Timeout; Window Size
Distribution; Solutions.

I. INTRODUCTION

As a prosperous industry, modern large-scale data center
is developing quickly to enable cloud computing and bolster
online services. In these online data intensive applications,
the divide and conquer method is widely used in typical
computing paradigms, such as MapReduce [7], Spark [18],
Dryad [8], CIEL [11] and TritonSort [15], where many-to-one
traffic pattern is common. For example, most of today’s web
search applications follow the partition/aggregation design
pattern [4]. One big task is divided into pieces and assigned to
many workers. Then the responses are aggregated to generate
the final result. However, data simultaneously sent by many
senders during the aggregation period is likely to overwhelm
the switch buffer and make TCP’s loss recovery mechanism
lose efficacy. Then abnormal timeouts are triggered to result in
catastrophic throughput collapse, which becomes lower than
the link capacity by one or even two orders of magnitude. The
completion time of delay-sensitive short flows is considerably
extended, so the response misses the aggregator’s deadline
and is excluded from the final result. These special issues in
Incast traffic are called TCP Incast problem, which degrades
the network performance and then worsen user experience.

Since Incast was first termed in [12], lots of trails have been

made. Early researches focus on modeling and analyzing. Jiao
Zhang et al. attribute TCP Incast throughput collapse to two
kinds of timeouts and provide detailed throughput estimation
of a certain TCP version [19]. [6] presents a simple model to
predict the throughput by fitting the experimental data instead
of theoretical analysis.

On the other hand, some researches focus on solving TCP
Incast problem. They can be classified into four categories
roughly. (1) Adjusting system parameters: several trials have
been made by changing the synchronized block size, enlarging
the switch buffer size, or just increasing the capacity [14].
(2) Designing enhanced mechanisms: to reduce bandwidth
wastage during timeout period, [16] reduces minimum Re-
transmission Timeout (RTOmin) to microsecond granularity.
(3) Replacing loss-based TCP version: some approaches be-
lieve that delay-based algorithms improve the behavior of In-
cast traffic. (4) Designing new transmission protocols: ICTCP
[17] and DCTCP [4] are two typical instances customized for
data center network to solve Incast problem as well as to meet
other additional requirements, such as low latency.

To the best of our knowledge, although there are lots
of investigations both in analyzing and solving TCP Incast
problem, there is little work attempting to close the gap
between “analyzing” and “solving”. The existing theoretical
analysis either focuses on modeling the scenario of one special
TCP version in Incast traffic, or is based on experimental data.
They can provide some insights into understanding TCP Incast
problem. However, these models are either closely coupled
with particular protocol version or dependent on empirical
observations, so a panoramic view is hardly captured. On the
other hand, most solutions are proposed as heuristic designs.
The negative impact of TCP Incast problem on performance
can be constrained at some extent, but cannot be eliminated
because the underlying issues may not be identified complete-
ly.

In this paper, we intend to build a simple interpretive model
under proper assumptions to provide a comprehensive under-
standing of TCP Incast problem. The interpretive model em-
phasizes particularly on describing qualitatively how various
factors, including system parameters and mechanism variables,
affect network performances in Incast traffic pattern, but not on
calculating the accurate throughput. Through observing lots of
trace data in Incast scenarios, we verify that timeout is the root
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cause of TCP Incast problem, and the full window loss is the
chief criminal. Then an interpretive model is built combining
with experimental observation and qualitative analysis. We
also redo the experiments to confirm that the model can
give plausible explanations why the various solutions for TCP
Incast problem can help, but do not solve it entirely.

The major contributions in this paper are threefold:
• Building a simple interpretive model to analyze the

influence of system parameters and mechanism variables in
flow control.
• Providing qualitative description of the impact of various

factors in Incast traffic performance.
• Explaining why some solutions for TCP Incast problem

work but hardly solve it entirely. The experiment results
confirm our analysis.

The rest of the paper is organized as follows. The prior
analysis work and solutions for TCP Incast problem are
summarized in Section II. In Section III, we introduce the
experimental setup and main assumptions. An interpretive
model is built in Section IV, which considers all the key system
parameters and mechanism variables in congestion control. In
Section V, we conduct experiments to reproduce some typical
solutions for Incast problem and analyze their performances.
Finally the paper is concluded in Section VI.

II. RELATED WORK

A. TCP Incast problem

Generally speaking, TCP Incast problem refers to TCP
performance degradation when it runs in many-to-one traffic
pattern. Initially, the catastrophic throughput collapse is ob-
served when relatively great number of senders concurrently
transmit data blocks to a single receiver, and any sender
is not allowed to send the next data block until all the
senders finish transmitting the current blocks [12]. Subsequent-
ly, in the delay-sensitive online applications which employ
partition/aggregation computing paradigm, very few senders
seriously protract the tail of flow completion time, so the
system responds sluggishly or some responses are excluded
from the final result due to missing the aggregator’s deadline,
which will impose negative impact on user experience [4].

These performance issues are related to TCP Incast problem.
Seemingly, throughput and delay are different performance
metrics. However, throughput collapse and flow completion
time extension can both be attributed to the ill-suited mecha-
nism in TCP flow control scheme, namely, abnormal timeouts
are triggered. Generally, low throughput implies long comple-
tion time. Therefore, without special statement, the throughput
is regarded as an iconic performance metric for understanding
TCP Incast problem in this work.

B. Modeling

Some efforts have been made to analyze the throughput
collapse phenomenon of TCP Incast by modeling.

Analytical Model: Jiao Zhang et al. summarize that the
throughput collapse in TCP Incast is mainly caused by Block
Head TimeOut (BHTO) and Block Tail TimeOut (BTTO) [19].

A goodput model of TCP Incast is built which describes the
causes of the two kinds of timeouts. The model is validated
by comparing with simulation data, and it can describe the
features of Incast well under TCP NewReno.

Fitting Model: [6] uses empirical data to reason the dy-
namic system of TCP Incast. It proposes an analytical model
estimating the throughput functions by fitting the experimental
data. The model well explains some of the observed trends.

C. Solution

Except for modeling TCP Incast throughput, most of the
investigations target to solve TCP Incast problem.

Adjusting System Parameters: Incast throughput collapse
is a relatively complex case in which many system parameters
are involved. Some attempts are made to alleviate TCP Incast
problem by adjusting parameters, such as changing block size,
enlarging buffer size, and increasing capacity [14]. Another
typical example is that Facebook’s researchers propose lim-
iting the number of concurrent flows to alleviate TCP Incast
problem [13].

Designing Enhanced Mechanisms: V. Vasudevan et al.
claim that some timeouts in Incast traffic pattern are hard to be
eliminated without extra mechanisms, so they suggest reducing
RTOmin to alleviate the throughput collapse [16]. Also as
a simple and cost-effective enhanced mechanism, shrinking
Maximum Transmission Unit (MTU) is proposed in [21] to
mitigate TCP Incast problem.

Replacing loss-based TCP version: Some researches are
interested in how the delay-based TCP algorithms behave
in Incast scenario. Delay-based algorithms like Vegas [5]
and FAST [14] can adjust the congestion window (cwnd)
properly according to the delay information generated by RTT
measurement. They think the slight adjustment of window
sizes is beneficial to protect the buffer from overwhelming.

Designing New Transmission Protocols: ICTCP is pro-
posed to solve Incast problem by adjusting the advertised
window (awnd) at the receiver side by estimating the avail-
able bandwidth and RTT [17]. DCTCP employs Explicit
Congestion Notification (ECN) and uses a weighted-average
metric from the multi-bit information of ECN to adjust cwnd
[4]. It can effectively avoid packet losses thus reducing the
probability of timeout.

The related theoretical analysis work provides insights of
Incast problem, but they either focus on modeling the scenario
of one special TCP version, or depend on experimental data
in special network environment. Various solutions exhibit
different visions of Incast problem and provide performance
gain. However, the work combining comprehensive under-
standing with explanations to the solutions is still absent. Our
work is to fill the gap between analysis and solutions by
providing an interpretive model which considers all the key
system parameters and mechanism variables, and can also give
plausible explanation to the existing solutions.
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Fig. 1: Topology and parameter configurations.

III. ENVIRONMENT AND ASSUMPTIONS

A. Experimental Setup

To demonstrate the details of Incast problem in real-world
environment, we build up a testbed and use tcpprobe [3]
as the measurement tool. The basic topology of our testbed
is made up of one switch and four end hosts. The switch
function is realized by NetFPGA cards with 1Gbps Ethernet
port, and the queue management scheme is Drop-Tail. Three
of the four hosts act as servers, and the other one acts
as the client. The propagation RTT without queuing delay
is approximately 100µs. In our experiment, each packet is
1.5KB. Each end host can run multi-thread applications, and
one thread represents one flow. The flows are distributed
evenly among the three end hosts. Therefore, the number of
active flows can be very large without the limitation of the
number of machines.

B. Assumption

First of all, we should introduce two important concepts.
One is transmission. One transmission begins from the senders
starting to transmit new data blocks, and ends at completing
this new task. The other is round. The first round starts from
a congestion avoidance period of TCP evolution and lasts one
RTT. The next round starts from the end of last round and
lasts one RTT.

To abstract the model from real environment, we also need
some reasonable assumptions. Assume that the packets will
be dropped only when the bottleneck buffer overflows. All the
packets will be dropped with equal probability. What’s more,
we have two assumptions which will be deeply analyzed and
validated in Section IV: (1) Full window loss is the major
kind of timeout that causes TCP Incast problem; (2) The
distribution of window sizes in Incast traffic pattern is normal
distribution.

The topology and parameter configurations in TCP Incast
scenario are shown in Fig. 1. N senders transmit data blocks
with size of S to the receiver. The capacity of the bottleneck
is C packets per second. The buffer size is B packets. Each
sender maintains its own cwnd, and the ACKs will bring back
the awnd information from the receiver. Then the sending
window size for the next round is the smaller one of cwnd

TABLE I: Key notations.

Not. Description
x Window size of a given flow in packets
w̄ Average window size in packets
σw Standard deviation of the window sizes in packets
p Probability of packet loss
N Number of flows
S Block size in packets
C Link capacity in packets per second
D The Round-Trip Time in seconds
B Buffer size in packets
R Number of rounds in one transmission
Th Throughput
tr Transmission time of one flow
ETr Expected duration of transmission
ETO Expected duration of timeout
PTO Probability of timeout
τTO Duration of timeout

and awnd. The key notations are summarized in Table I for
the sake of terseness.

IV. INTERPRETIVE MODEL

The analytical model in [19] or the fitting model in [6]
can accurately estimate TCP Incast throughput, and then can
also provide some insights in identifying the radical reasons
for TCP Incast problem. However, these models are either
only applicable for special TCP version (such as NewReno
in [19]), or built on experimental data in special network
configurations [6]. Because the important mechanism in end-
to-end congestion control and some key system parameters
are not explicitly involved in the models, it is hard to get
a comprehensive understanding of TCP Incast problem. In
light of this, in this work, we intend to construct a concise
interpretive model to capture the dominant factors in TCP
Incast problem.

A. Throughput

The TCP Incast throughput collapse is mainly caused by
timeouts. Through observing lots of trace data, we find that all
the timeouts can be classified into two categories. One is full
window loss, which occurs when an entire window is lost and
there is no feedback ACK, so TCP’s Fast Retransmission/Fast
Recovery mechanism fails. The other happens when there are
not enough ACKs to trigger retransmission. We call the former
Full Loss Timeout (FLT) and the latter Lack ACK Timout
(LAT).

Using the concepts of transmission and round defined in
Subsection III-B, three typical scenarios illustrated in Fig. 2
are likely to appear during transmitting one data block in
Incast communication pattern. Fig. 2(a) presents a normal
situation, namely the flow takes a short time interval tr1 to
finish its transmission consisting of several rounds without any
timeouts. Fig. 2(b) and (c) illustrate two abnormal cases, where
timeouts are triggered. Fig. 2(b) encounters FLT from the start
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of transmission, thus the completion time consists of TO and
tr2. The timeout shown in Fig. 2(c) is owing to LAT. The flow
loses part of the block and has to retransmit the rest so that
its transmission time includes two parts, tr3,1 and tr3,2.

Now we consider the scenario that N senders transmit data
blocks with size S to the same receiver synchronously. The
total amount of transmission data is N ·S. The total completion
time is consisted of two parts: the time duration when link is
busy, and when link is idle. Let ETr represent the expectation
of the duration that the link is transmitting data, and ETO as
the expectation of the duration that the link is idle. Thus the
throughput can be presented as follows:

Th ∝ N · S
ETr + ETO

(1)

From Fig. 2, we can find that Tr is the union of all the
transmission time of N flows:

Tr = ∪
0<i≤N

∪
j>0

tri,j (2)

where i represents the i − th flow, and j is the j − th
transmission period of the i− th flow.

It is hard to calculate the precise value of Tr. However,
we assume that the link capacity is fully utilized when
transmitting data. Thus, the expectation of transmission time
can be approximated:

ETr ≈ N · S
C

(3)

For the idle time, timeout appears. Although many flows

may encounter timeouts, their waste time is highly overlapped.
So we can approximately take one TO as the waste time
in one transmission. Thus the expectation of the idle time is
the probability of timeout PTO, multiplied by the duration of
timeout τTO:

ETO ≈ PTO · τTO (4)

Hence, the expectation of throughput can be presented as:

Th ∝ N · S
N · S/C + PTO · τTO

(5)

It is obvious that all the parameters except PTO are easy
to be substituted into (5). Our next work is to predict the
probability of timeout. Fig. 3 presents the number of FLT
and LAT as the number of concurrent flows increases. The
statistical result shows that more than 90% of timeouts are
FLT after 15 flows. Hence, when we predict the probability
of timeout, FLT is our first concern.

B. Window Size Distribution

When studying the details of timeout, we find that most
sacrificed flows in FLT are with small windows. We take 15
flows of NewReno as an example, and record the window
size of each flow when timeout happens. As shown in Fig.
4, in most rounds that encounter timeouts, the loss of the
whole small window causes FLT. Actually, if the window size
distribution at the start of one round is polarized, the small
windows are more easily squeezed out by the large ones.

To conclude the regular pattern of window size distribution,
we monitor the window size of each flow every 0.1s (except
the timeout duration) in ns-2 simulation platform [1]. The
statistic result of window sizes is shown in Fig. 5(a). The
shape of the frequency curve follows normal distribution. At
30 flows, the window size distribution also looks like normal
distribution as shown in Fig. 5(b).

Then we enlarge the range from 15 to 30 flows, and check
whether the normal distribution is a reasonable assumption
using SPSS [2]. The input data is a collection of window
sizes of all the flows at the same time. Table II shows the
analysis result using Kolmogorov-Smirnov test [9], which is
the principal goodness of fit test for normal and uniform data
sets. In this example, the null hypothesis is that the data
is normally distributed. In most cases, the values of “Sig”
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TABLE II: The result of Kolmogorov-Smirnov test.

Num. of flows 16 17 18 19 20
Asymp. Sig. 0.241 0.306 0.436 0.157 0.054

Num. of flows 21 22 23 24 25
Asymp. Sig. 0.000 0.149 0.012 0.079 0.262

Num. of flows 26 27 28 29 30
Asymp. Sig. 0.706 0.136 0.173 0.084 0.561

columns are above 0.05, which means the null hypothesis is
not rejected. Thus we can accept the assumption that the win-
dow size distribution at a certain time is normal distribution.
The probability density function of normal distribution is:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (6)

where µ is the average and σ is the standard deviation.

C. Probability of Timeout

After describing the window size distribution in reasonable
functions, we can calculate the probability of timeout consid-
ering the characteristics. Assume FLT is the dominant timeout,
we have the following lemma:

Lemma 1. In Incast scenario, the probability of timeout in
one round P k

FLT is proportional to ew̄lnp+ 1
2σ

2
w(lnp)2 , where w̄

is the average window size at the start of one round, σw is the
standard deviation, and p represents the probability of packet
loss.

Proof:
1) FLT of one flow: At certain time, the i − th flow of

k − th round with x window size has the probability of:

pki (x) =
1√
2πσw

e
− (x−w̄)2

2σ2
w (7)

FLT indicates that the packets in a whole window are lost.
So, for the flow with sending window size x, the probability
of FLT is:

pki−FLT (x) = pki (x) · px (8)

2) FLT of one round: Any one of the flows which loses
the whole window will trigger FLT in one round. Thus the
probability of FLT of the k − th round is:

P k
FLT ≈

∫ +∞

0

pi−FLT (x)dx

=

∫ +∞

0

1√
2πσw

e
− (x−w̄)2

2σ2
w pxdx (9)

Let t = x−w̄
σw

, then

P k
FLT ≈

∫ +∞

− w̄
σw

1√
2πσw

e−
t2

2 e(σwt+w̄)lnpd(σwt+ w̄)

=
1√
2π

∫ +∞

− w̄
σw

e−
1
2 (t−σw·lnp)2+w̄lnp+ 1

2σ
2
w(lnp)2dt

=
1√
2π

ew̄lnp+ 1
2σ

2
w(lnp)2

∫ +∞

− w̄
σw

e−
1
2 (t−σw·lnp)2dt

(10)

Define the error function fe(x) as:

fe(x) =
2√
π

∫ x

0

e−t2dt (11)

And the relationship between error function and normal
distribution is:∫

1

σw

√
2π

e
− (x−w̄)2

2σ2
w dx =

1

2σw
[1 + fe(

x− w̄√
2σw

)] + C0 (12)

where C0 is a constant.
Then Eq. (10) can be rewritten as:

P k
FLT ≈ 1

2
ew̄lnp+ 1

2σ
2
w(lnp)2 · [1 + fe(

x− σw · lnp√
2

)]|+∞
− w̄

σw

=
1

2
ew̄lnp+ 1

2σ
2
w(lnp)2 [1 + fe(

w̄ + σ2
w · lnp√
2σw

)] (13)

Since −1 ≤ fe(x) ≤ 1, we can get the upper bound of
P k
FLT :

P k
FLT ≤ ew̄lnp+ 1

2σ
2
w(lnp)2 (14)

In Incast traffic pattern, we can assume that the probability
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of packet loss is not too small. When lnp ≥ − w̄
σ2
w

, we can
have the following inequation:

fe(
w̄ + σ2

w · lnp√
2σw

) ≥ 0

Thus we can also get the lower bound of P k
FLT :

P k
FLT ≈ 1

2
ew̄lnp+ 1

2σ
2
w(lnp)2 [1 + fe(

w̄ + σ2
w · lnp√
2σw

)]

≥ 1

2
ew̄lnp+ 1

2σ
2
w(lnp)2 (15)

Combining (14) and (15) we have:

1

2
ew̄lnp+ 1

2σ
2
w(lnp)2 ≤ P k

FLT ≤ ew̄lnp+ 1
2σ

2
w(lnp)2

Namely,
P k
FLT ∝ ew̄lnp+ 1

2σ
2
w(lnp)2 (16)

Obviously, if the network congestion is so severe that p → 1,
then lnp → 0 and PFLT → 1.

Lemma 2. In Incast scenario, if each round has the same
probability of timeout, then the probability of timeout in one
transmission is PTO = 1 − (1 − P k

FLT )
R, where R is the

number of rounds.

Proof:
Assume one transmission has R rounds. The transmission

will be and only be successful when all the rounds have no
FLT. If the k− th round has the probability of FLT as P k

FLT ,
and we only consider the impact of FLT, the probability that
one transmission will suffer timeout is:

PTO = 1−
∏

1≤k≤R

(1− P k
FLT ) (17)

If every round has the same probability P k
FLT , then PTO can

be simply presented as 1− (1− P k
FLT )

R.

D. Theoretical Analysis

From Lemma 1, we can conclude that, decreasing w̄, σw

and lnp can decrease PFLT . When calculating p, we have an
interesting proposition as below:

Proposition 1. In Incast scenario, if the other parameters (C,
S, R, D, p, w̄, σw) are kept unchanged, then N is linear with
B before the throughput collapse.

Proof: Because the average window size is w̄, N · w̄
packets will be injected into the network in one round. C ·D
packets will be served by the bottleneck link. Assume the
number of arriving packets at the switch exceeds the buffer
size, then N · w̄−B−C ·D packets will be equally dropped.
Hence, the probability of packet loss can be presented as:

p =
N · w̄ −B − C ·D

N · w̄
(18)

If B ≫ C ·D, we’ll get:

p ≈ 1− B

N · w̄
(19)

Then N is linear with B.
Remark: In data center networks, the characteristic of the

pipeline is B ≫ C ·D. For example, in a 1Gbps link capacity
network, if D = 100µs, then C ·D = 12.5KB. However, the
buffer size is often hundreds of KB or even in the unit of
MB. Hence, we can approximately conclude that N is linear
with B. In literature [14], A. Phanishayee also mentioned this
phenomenon, namely, doubling the size of the switch’s output
port buffer doubles the number of servers that can transmit
before Incast.

Next, we analyze the impact of w̄ and σw in (16). The
function actually contains two components:

ew̄lnp+ 1
2σ

2
w(lnp)2 = ew̄lnp · e 1

2σ
2
w(lnp)2 (20)

Since 0 < p < 1, lnp < 0. Hence, ew̄lnp is smaller than 1,
and e

1
2σ

2
w(lnp)2 is larger than 1. We define the former as the

“negative component” and the latter “positive component”. The
increase of w̄ and σw will increase the negative component and
the positive component separately.

Proposition 2. In Incast scenario, keep the other parameters
(C, S, R, D, B) unchanged. When N is small, a little increase
of σw will enlarge PFLT dramatically. As N increases, w̄
becomes the dominant factor of PFLT . When N increases to
certain extent that w̄ ≫ B/N , PFLT is irrelated with σw and
w̄ and has the largest value as e−

B
N .

Proof: When N is not so large, p is away from 1, which
makes lnp far away from 0. Then PFLT is mainly influenced
by its positive component. Because σw appears as the quadratic
term of the exponent, PFLT will increase dramatically even
if σw increases a little. As N increases, lnp tends to 0, then
we can ignore the higher order terms of lnp. So the negative
component has greater impact on the value of PFLT . As N
continues to grow, B/N becomes more and more closer to 0.
When w̄ ≫ B/N , B

Nw̄ → 0, we can get the Taylor series of
the exponent of negative component as:

w̄lnp ≈ w̄ln(1− B

Nw̄
)

= w̄[− B

Nw̄
− 1

2
(
B

Nw̄
)2 − 1

3
(
B

Nw̄
)3 − · · ·]

≈ −B

N
(21)

Ignoring the impact of positive component, PFLT has the
largest value as e−

B
N .

Remark: The influence of window size distribution with
the increase of N can be divided into three stages. First,
when N is small, the positive component is the dominant
component. σw has great impact on the system throughput.
Second, as N increases, w̄ becomes more important and
the negative component dominates PFLT . Third, when N
increases to certain extent, PFLT is independent with w̄ and
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Fig. 6: The throughput of different block
sizes.
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σw, which means the window size distribution is irrelated with
the throughput.

As aforementioned, in data center network, B ≫ C ·D. The
ideal average window size of each flow approximately equals
to B/N , which means N flows share the buffer size averagely.
Actually, when no Incast problem happens, the window size
of each flow will fluctuate up and down the average line
slightly in the steady state. However, if N is too large that
w̄ ≫ B/N , where w̄ is the adjustment result of congestion
control mechanism and B/N is the average value at steady
state, the injecting packets will severely exceed the network
capacity. When B/N is close to or smaller than 1, even if
every flow injects one packet into the network, the buffer
size at the bottleneck will still be overwhelmed and FLT is
triggered.

Hence, our model of throughput considers all the impact
of key system parameters and mechanism variables. System
parameters include link capacity C, block size S and buffer
size B. Mechanism variables include RTOmin, average win-
dow size w̄ and standard deviation of window sizes σw. In the
next section, considering these parameters, we’ll discuss their
qualitative impact on the throughput.

V. SOLUTION ANALYSIS

In this section, we analyze the impact of key system pa-
rameters and mechanism variables. We also reproduce several
well-known solutions for TCP Incast problem and analyze how
they will alleviate the throughput collapse. When we analyze
a certain parameter or solution, other parameters are kept
unchanged. The default parameters in our experiments are:
C = 1Gbps, B = 128KB, S = 64KB, RTOmin = 200ms,
and the default TCP version is NewReno. We reproduce each
solution 100 times and get the average throughput as the final
result.

A. Adjusting System Parameters

1) Capacity: An easy way to improve throughput under
Incast scenario is to increase the link capacity. Increased link
capacity implies an increase in potential packet processing
rate. First, the transmission time ETr ≈ N · S/C will
be reduced. Second, increasing capacity will decrease the
probability of packet loss. We can rewrite Eq. (18) as follows:

p = 1− B + C ·D
N · w̄

(22)

Obviously, larger C results in smaller p, thus larger through-
put.

2) Block Size: (5) can be rewritten as:

Th ∝ C − C2 · ETO

N · S + C · ETO
(23)

When other parameters are kept unchanged, larger synchro-
nized block size results in larger throughput.

Changing block size as a solution is proposed in [14]. In Fig.
6, after the throughput collapse, the block size of 512KB has
the largest throughput. However, S only enlarges throughput
after the collapse, it cannot avoid timeout. ETO still occupies
a big part of the denominator in (1), and strongly imposes
negative impact on the throughput.

A particular phenomenon in Fig. 6 is that the smaller the
block size, the later the throughput collapse happens. S =
32KB is the latest to have an obvious throughput collapse.
This seems to violate our analysis that the larger block size,
the larger throughput. However, when block size increases, the
number of rounds R may also increase. According to Eq. (17),
increasing R means increasing the risk of full window loss in
a whole transmission process. Because 32KB is so small that
only 3 or 4 rounds of transmission will complete the task, it
has the lowest risk.

3) Buffer Size: We implement Incast experiment with d-
ifferent buffer sizes. The results are shown in Fig. 7. An
obvious tendency in Fig. 7 is that larger buffer size will support
more concurrent flows. Although not so precisely, we can still
observe a rough tendency that, when the buffer size doubles,
the number of the supported concurrent flows also doubles.
Another method to mitigate TCP Incast mentioned in [21] is
to shrink MTU size. Actually, because the unit of buffer size in
our model is in packets, the buffer will contain more packets
with smaller MTU. Halving MTU has almost the same effect
of doubling buffer.

B. Designing Enhanced Mechanisms

RTOmin is the minimum time that TCP will experience
under abnormal packet loss. Reducing RTOmin is actually
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Fig. 9: (a) Throughput of NewReno, Vegas and FAST in simulation. (b) The average and standard deviation of the window
sizes of NewReno, Vegas and FAST, where the dots connected with horizontal lines represent the averages and the vertical lines
represent the standard deviations. (c) An illustration of window size distribution of Vegas at 15 flows. The circles represent
the window sizes at the start of each round.

reducing τTO in (4). Although PTO may not change, if τTO

drops heavily by several orders of magnitude, the throughput
collapse is alleviated. Typically, RTOmin is set to 200ms. V.
Vasudevan et al. suggest reducing RTOmin to microsecond
granularity to alleviate the throughput collapse [16].

We test three values of RTOmin as 50ms, 100ms and
200ms. The results are shown in Fig. 8. RTOmin with 50ms
seems to have the largest throughput. However, all the three
situations have the same point of throughput collapse, which
means they almost have Incast problem at the same value of
N . Smaller RTOmin only helps to diminish the bandwidth
wastage during timeout periods, but timeout still occurs. There
is concern with this method, though: setting RTOmin too
small may result in spurious retransmissions [20].

C. Replacing loss-based TCP version
Delay-based algorithms bring new insights into congestion

control that we can sense the network congestion not only
based on the packet loss, but also on the delay. Vegas [5]
provides TCP the ability to anticipate congestion and adjust
its transmission rate according to the information generated
by RTT measurements. FAST [10] is considered to inherit the
advantages of Vegas and make further improvements.

We simulate NewReno, Vegas and FAST via ns-2. The
link capacity is 1Gbps, RTT is 100µs and the block size is
100KB. We set the buffer size to 64KB, and each packet is
1KB. Fig. 9(a) demonstrates that Vegas and FAST outperform
NewReno. The average and standard deviation of the window
sizes are shown in Fig. 9(b). NewReno has larger average
and standard deviation than those of Vegas and FAST. Fig.
9(c) is an illustration of window size distribution of Vegas
at 15 flows. Compared to NewReno in Fig. 4, after several
rounds of adjustment, the window sizes almost converge to
the same value. According to Proposition 2, a little increase
of σw will increase PFLT dramatically. Thus the larger σw

of NewReno causes earlier throughput collapse compared to
Vegas and FAST. Besides, NewReno has the largest w̄, which
is also the dominant factor to increase PFLT .

The different σws of these three TCP versions are caused
by their different mechanisms at the congestion avoidance

phase. Additive Increase Multiplicative Decrease (AIMD) is
the congestion avoidance mechanism for NewReno. The win-
dow size will be increased by 1 if no packet loss is detected,
or be halved if packet loses. Instead of simply increasing the
window, Vegas has slight window size adjustment when no
packet loss is detected. The window size can be increased
by 1, decreased by 1, or just kept unchanged, according to
the difference between the expected and measured throughput.
Similar to Vegas, FAST also employs a mild adjustment
law for window size. Compared to aggressive AIMD, the
mild adjustment tends to result in converged window size
distribution. Because of the smaller σw and w̄, Vegas and
FAST are less likely to have crazy increasing windows which
may crowd out other small windows.

D. Designing New Transmission Protocols

Several recently proposed transmission protocols can avoid
TCP Incast problem by designing new algorithms to suit the
characteristic of data centers.

ICTCP [17] focuses on Incast scenario that the last hop is
the bottleneck. It prevents timeout by dynamically adjusting
the awnd at the receiver side. The feedback awnd will adjust
the window size at the sender side to a fair value. ICTCP uses
the similar concept of Vegas that it also adopts two thresholds
to differentiate three cases for awnd adjustment. Thus the
window size distribution of ICTCP also appears in small σw

and w̄, which results in small probability of timeout.
M. Alizadeh et al. propose DCTCP [4] to achieve high

throughput while maintaining low latency. DCTCP sets up
one threshold K at the switch and employs ECN to reflect
the congestion of the network. Then each sender generates
one-bit information from ECN feedback and form multi-bit
information represented as a weighted-average metric α. The
window size for the next round is calculated according to
cwnd → cwnd(1− α/2), where 0 < α < 1.

In our experiment, we set K = 20 packets of DCTCP
as recommended. We compare the performances of TCP
NewReno and DCTCP in Fig. 10(a). DCTCP can sustain
much more concurrent flows than NewReno. According to
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Fig. 10: (a) Throughput of NewReno and DCTCP. (b) The sawtooth waves of window size of DCTCP and TCP NewReno.
(c) The average and standard deviation of the window sizes of the 10 flows.

the regulation mechanism, we draw the window size of a
single DCTCP and TCP NewReno sender in Fig. 10(b). In
TCP NewReno, the ideal average window size in the steady
state is approximately B/N . Assume the maximum window
size is Wt, the window size will fluctuate up and down the
average line, while between Wt and Wt/2. However, because
DCTCP sets K at the switch side to constrain the queue
length, the ideal average window size at the steady state is
approximately K/N . What’s more, DCTCP calculates the
window size according to cwnd → cwnd(1 − α/2), if the
maximum value is Wd, then the amplitude of oscillation in
window size is given by:

Wd −Wd(1−
α

2
) =

α

2
·Wd (24)

Since α < 1, the window size fluctuates within a smaller range
than TCP NewReno. Some theoretical analysis of the oscilla-
tion in DCTCP is conducted in [4]. It assumes α is small and
can be simplified as α ≈

√
2/(Wd − 1). Thus the amplitude

of oscillation approximately equals to 1
2

√
2(C ·D +K)/N .

We take 10 flows as an example, and calculate the average
and standard deviation of the window size of each flow in Fig.
10(c). Because K < N , the average window sizes of DCTCP
are smaller than those of TCP NewReno, and all the 10 flows
have nearly the same average. Since the amplitude of window
size oscillation in DCTCP is much smaller than that of TCP
NewReno, the window sizes in DCTCP have smaller standard
deviations. As we discussed in Proposition 2, larger w̄ and σw

induce larger probability of timeout, thus DCTCP has better
performance than TCP NewReno in Incast traffic pattern.

VI. CONCLUSION

In this paper, we provide an in-depth understanding of
how TCP Incast problem happens. Based on experimental
researches, an interpretive model is presented particularly
focusing on how the key system parameters and mechanism
variables affect the performance of flow control system in
Incast traffic pattern. We fill the gap between prior “analyzing”
and “solving” work by providing qualitative analysis, rather
than calculating accurate throughput in certain environment.
With this model, we reproduce several methods of solving TCP

Incast and give plausible explanations on their performances.
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