
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014 39

Sharing Bandwidth by Allocating Switch Buffer in
Data Center Networks

Jiao Zhang, Fengyuan Ren, Xin Yue, Ran Shu, and Chuang Lin

Abstract—In today’s data centers, the round trip propagation
delay is quite small. Therefore, switch buffer sizes are much
larger than the Bandwidth Delay Product (BDP). Based on this
observation, in this paper we introduce a new transport protocol
which provides bandwidth Sharing by Allocating switch Buffer
(SAB) for data centers. SAB sets the congestion windows for
flows based on the buffer size of the switches along the path.
On one hand, as long as the total buffer allocated to all the
flows is larger than the BDP, the network bandwidth can be
fully utilized. On the other hand, since SAB only allocates the
buffer space to flows, the totally injected traffic will not exceed
the network capacity. Thus, SAB rarely loses packets. SAB also
reduces flow completion time by allowing flows to reach their fair
share of bandwidth quickly. The results of a series of experiments
and simulations demonstrate that SAB has the features of fast
convergence and rare packet loss. It reduces the latency of short
flows and solves theTCP Incast and TCP Outcast problems.

Index Terms—Data Center Networks, Transport Protocol, Fast
Convergence, Rare Loss

I. INTRODUCTION

DATA center networks have extremely low Round Trip
Time (RTT), typically on the order of a few hundred

microseconds [1], [2]. This low RTT results in a small
bandwidth-delay product. Therefore, the switch buffer size
is often larger than the in-flight traffic on the links. Also,
applications in data centers incur a large number of short
messages [3], [4], high churn [5], and special communication
patterns, such as many-to-one [6], [7].

Due to these features of data centers, traditional transport
protocols like TCP face many challenges. The three main chal-
lenges are: high latency of short flows [3], [8], TCP Incast [1],
[7], [9] and TCP Outcast [10]. The TCP Incast problem occurs
when multiple senders synchronously transmit stripe units to
a single receiver. The synchronized multiple connections can
easily cause traffic bursts which cause timeout periods. Since
the Minimum Retransmission TimeOut (RTOmin ) of TCP
generally equals 200 milliseconds in default, which are orders
of magnitude larger than the microsecond-granularity RTT
in data center networks, the bandwidth waste during timeout
periods dramatically decreases goodput. The TCP Outcast [10]
refers to the problem that when two groups of flows arrive at
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two input ports, and need to be forwarded to the same output
port, the smaller group, on average, has lower throughput.

Several solutions have been proposed to deal with these
problems. Researchers at Google suggested increasing TCP’s
initial window to at least 10 packets [8] or enabling data
transmission during TCP’s initial handshake phase [3] to
decrease the response time of web queries. M. Alizadeh et al.
developed DCTCP [4] which leverages the ECN mechanism
to keep the queue small and thus decrease the delay of short
flows. To mitigate the TCP Incast throughput collapse, V.
Vasudevan et al. suggested decreasing RTOmin to reduce the
bandwidth waste caused by timeouts [1] and W. Hu et al.
proposed ICTCP, which adjusts the receiver window to avoid
packet loss [11]. As for the TCP Outcast problem, it is shown
that some queue management schemes (such as RED [12] and
SFQ [13]) and assisted or enhanced mechanisms (such as TCP
pacing and equal-length routing) can improve fairness to some
extent, but hardly eradicate the problem [10].

Existing solutions address these problems individually,
which means that while the solutions benefit some specific
applications, they might negatively impact others. For ex-
ample, increasing TCP’s initial window size exacerbates the
throughput collapse in the Incast scenarios due to the heavy
bursts introduced by the larger initial window, and reducing
RTOmin readily leads to spurious timeout.

What are the desirable properties for a data center transport
protocol? First, fast convergence. The convergence rate of
traditional TCP protocols is so slow that the short flows, which
only consist of several packets, are transmitted during the
climb-up phase of the congestion window in the slow start
procedure. The sluggishness of the flow control algorithm
defers the transmission of short messages. Second, losses
should be rare. In some specific applications, the loss of some
packets incurs high cost. For example, if any one of the last
three packets of a block is lost in a TCP Incast scenario,
timeout will be unavoidable due to inadequate ACKs [7], [9].
The TCP Outcast problem is also caused by packet losses.
Thus, the flow control algorithms driven by packet dropping
are unsuitable for data center networks. Ideally, a transport
protocol without packet loss is desired. However, it is very
hard to guarantee zero packet loss ratio without quite complex
control. For example, the credit-based flow control avoids
packet loss at the cost of maintaining buffer states for every
Virtual Channel (VC) at all the routers/switches [14]. For a
VC, only if the corresponding buffer has available space, the
sender could get some credits and transmit the same number
of packets. In data centers, the number of connections is quite
large, it is impractical to employ the zero-loss transport pro-
tocol without involving too much complexities. However, the
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loss ratio should be reduced to the greatest extent. Therefore, a
transport protocol with small overhead and rare loss is desired.

Can one design a new congestion control mechanism that
runs on the end hosts and possesses both properties of fast
convergence and rare packet loss? Small RTTs, high churn and
many-to-one communication pattern mean that the congestion
windows of short flows almost never achieve the appropriate
values. Therefore, it is hard to design a congestion control
mechanism at end hosts to satisfy all the requirements of the
applications in data centers.

In this work, by taking advantage of the specific feature of
data center networks, namely, quite small round trip propa-
gation delay, we propose a transport protocol which allocates
the switch buffer to determine the congestion window of each
flow.

Ideally, the bottleneck link should be full of packets and
the switch buffers should have quite small queue length,
that is, the total amount of the injected traffic approximately
equals the in-flight capacity. The switch buffer is reserved to
accommodate traffic bursts. Driven by packet losses, TCP and
most of other transport protocols probe the maximum network
capacity, including the buffer space and the in-flight capacity,
which naturally results in lots of packets dropping.

Based on the observation that the switch buffer size is
much larger than the BDP in data center networks, we follow
the framework of sliding window flow control defined in
the standard TCP, and customize a brand new flow control
mechanism for data center networks. The proposed mechanism
dynamically and promptly adjusts the congestion windows
of flows by allocating the switch buffer associated with the
bottleneck links. We referred to it as SAB.

SAB has two main advantages. First, it converges fast.
Because switches explicitly determine the congestion window
for each flow, SAB flows can converge to their fair bandwidth
in one RTT. Therefore, the latency of short flows can be greatly
reduced. Note that since SAB is a window-based congestion
control mechanism instead of rate-based, the fair throughput
achieved by a flow is inversely proportional to the RTT of
the flow. This kind of fairness with RTT bias also happens
in TCP according to the throughput model of a TCP flow
[15]. Second, SAB rarely loses packets. The maximum number
of packets accommodated by a network during one RTT is
the summation of the buffer size and the in-flight capacity.
SAB only allocates the buffer space to the senders. Besides,
SAB adapts to the situation where no more than one packet is
allocated to each flow by reducing MSS (Maximum Segment
Size). Hence SAB rarely loses packets. This feature can solve
the goodput collapse of TCP Incast as well as the unfairness
of TCP Outcast since they are both caused by large numbers
of packet losses.

We implemented the end host part of SAB in Linux kernel
2.6.38.3 and the switch part in NetFPGA. The results of our
experiments show that SAB indeed converges fast and rarely
loses packets. Furthermore, to evaluate the scalability of SAB,
we conducted a series of simulations on the ns-2 platform with
higher bandwidth and more senders.

The remainder of the paper is organized as follows. In the
next section, the features of related work are summarized. The
design rationale of SAB is presented in Section III. Section

IV describes the SAB mechanism in detail. In Section V, the
performance of SAB is evaluated in several designed scenarios
and an emulated real scenario. The results are compared with
DCTCP, D2TCP and TCP NewReno (with SACK). In Section
VI, we show the simulation results on the ns-2 platform with
higher bandwidth and more senders. The paper is concluded
in Section VII.

II. RELATED WORK

Credit-based Flow Control. Kung et al. proposed a credit-
based flow control mechanism without packet loss for ATM
networks [14], [16]. Each Virtual Channel (VC) is assigned a
constant or dynamic buffer space. The receiver sends credits
to the sender if some buffer space is available. Therefore,
the credit-based flow control mechanism prevents packet loss.
If the number of connections that share a path is small,
this method will not introduce much overhead. However,
communications among thousands of servers are quite frequent
in data centers, the number of connections along a path is
usually quite large. Maintaining the buffer space for each
connection at all the switches will introduce high overhead.

Evolution-based Flow Control. The number of literature
on TCP and its variants is huge. Here we mainly summarize
the relevant protocols proposed for data center networks.

To achieve high throughput for long flows as well as small
delay for short ones, DCTCP [4] employs the Explicit Con-
gestion Notification (ECN) and modifies the TCP congestion
control mechanism at senders to maintain a small switch queue
length. D2TCP [17] extends the window evolution algorithm
of DCTCP to provide differentiated services. The flows with
smaller remaining delay can get higher congestion window
size. The remaining flow size and the remaining time of
deadline-aware flows are required in this protocol. ICTCP is
proposed to solve the TCP Incast problem by adjusting the
advertised window (awnd) at receivers [11]. The bottleneck
link is assumed to directly connect to the receiver. The receiver
estimates the available bandwidth and RTT to compute the
reasonable awnd and thus each flow fairly injects proper traffic
to the network. However, exactly estimating the available
bandwidth and RTT in real-time is difficult. Besides, ICTCP
fails to work well if congestion does not happen at the last
hop.

Seawall aims to solve the performance interference and de-
nial of service attacks among tenants in virtual data centers [5],
[18]. A. Shieh et al. proposed an edge-based solution which
achieves max-min fairness across tenant VMs by sending
traffic through hypervisor-to-hypervisor tunnels. Each tenant
needs to be assigned a globally appropriate weight, which is
a challenging work. TCP Fast Open is designed to improve
the response rate of web services [3]. Data can be exchanged
during TCP’s initial handshake phase. Similar idea has been
proposed in earlier work to reduce latency [19], [20]. TCP Fast
Open deceases HTTP transaction network latency by 15%. In
[8], The initial window of TCP is increased to 10 MSS to
reduce the number of RTTs required to finish a web message.
However, it will exacerbate the throughput collapse of TCP
Incast due to quite large initial window. Besides, a constant
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higher initial congestion window could not adapt to different
network environments.

Explicit Rate Allocation. XCP [21] is a typical congestion
control scheme of explicit rate allocation. Each packet header
is extended to include current RTT and cwnd. Routers use the
information of all the flows to allocate bandwidth. XCP can
achieve high link utilization. However, it typically results that
the flows last two orders of magnitude longer than necessary
when there is a mix of flow sizes [22]. RCP [22] solves
the problem of XCP. However, similar to XCP, each packet
needs to carry the RTT value in its header. The router needs
the RTT information to compute that how much bandwidth
is required to drain the current accumulated packets in the
queue during a RTT period. The time-varying and quite small
RTT is hard to be exactly estimated in data centers. Most
kernel implementations track RTTs at a granularity of 1 ms
(the period of a jiffy), which is larger than the RTT in data
center networks.

In data center networks, D3 is designed to satisfy the delay
requirement of some flows [23]. When initiating a deadline-
aware flow, the source requests a desired rate based on the
flow size and deadline. Switches determine an allocated rate
for each flow. To adjust to the network state and satisfy the
deadline requirements, sources need to send update messages
to switches to announce their new desired rates periodically,
which will bring some overhead. Besides, D3 operates under
the assumption that the deadline is hard. However, in practice,
possibly it is better that all the synchronized flows complete at
the same time rather than several of them finish earlier in some
applications, such as the services with barrier synchronized
traffic pattern [11], and some MapReduce-based applications.

III. DESIGN RATIONALE

Our goal is to design a new transport protocol by making
use of the special feature of small round trip propagation
delay in data centers. Small propagation delay is a well-known
and important feature of data centers, and is the reason why
TCP timeouts incur dramatic goodput collapse in the Incast
communication pattern [7]. Small propagation delay allows
only a few packets to be on the link. For example, in a data
center network with link capacity C = 1 Gbps and round trip
propagation delay D = 200 us, the in-flight traffic only equals
CD = 25 KBytes.

Compared with the small in-flight capacity, the switch buffer
size in data center networks is relatively large [4]. Therefore,
if Van Jacobson’s pipe model [24] is followed to design the
transport protocol in data centers, most of packets injected by
the senders will be cached in the switch buffers.

Enlightened by the special feature of data centers and
considering the challenges of designing congestion control
mechanisms at end hosts, we intend to customize a transport
protocol for data centers, which promptly adjusts congestion
window sizes by properly allocating switch buffers. Next we
will demonstrate our idea using a simple model.

Consider a scenario where N flows share a bottleneck link
with capacity C bytes per second. The bottleneck buffer size is
B bytes. The round trip propagation delay of flow i is denoted

as Di. Let Wi represent the congestion window of flow i. The
following proposition can be obtained.

PROPOSITION 1: If the summation of the congestion
window of all the flows satisfies

N∑

i=1

Wi ∈ [CDmax, CDmin +B] (1)

where Dmax = max{Di} and Dmin = min{Di}, the
bottleneck link can be fully utilized without packet losses.

Proof: The bottleneck link can be fully utilized as long
as there are always packets to be sent in the bottleneck queue.

The bottleneck queue length equals the totally injected
packets minus the in-flight packets on the links. Denote
Nf as the number of in-flight packets. The queue length
Q = min{(∑N

i=1 Wi−Nf)
+, B}, where function (a)+ equals

a if a is a positive number, otherwise equals 0.
Next we firstly prove the proposition in the simple case that

all the flows have equal round trip propagation delay, then we
consider the case that the flows suffer different latencies.

• The flows have the same round trip propagation delay D.
In this situation, the in-flight capacity Nf = CD. Ob-

viously, if
∑N

i=1 Wi < CD, then the link will be idle at
some time. Thus, the link can not be fully utilized. While
when

∑N
i=1 Wi > CD + B, some packets will be lost at

the bottleneck buffer. If
∑N

i=1 Wi ∈ [CD,CD + B], the
buffer always has packets to be scheduled and does not drop
packets since the rate of arrival packets does not exceed the
link capacity.

• The flows have different round trip propagation delay Di.
From the above analysis, we know that as long as 0 ≤∑N
i=1 Wi −Nf ≤ B, the bottleneck link can be fully utilized

without packet losses. If the flows have different round trip
propagation delay, then the number of the in-flight packets
Nf ∈ [CDmin, CDmax]. To satisfy

∑N
i=1 Wi − Nf ≥ 0,∑N

i=1 Wi should be larger than the maximum of Nf , that
is,

∑N
i=1 Wi ≥ max{Nf} = CDmax. Besides, to satisfy∑N

i=1 Wi − Nf ≤ B, the inequality,
∑N

i=1 Wi ≤ Nf + B,
should be satisfied. Since the minimum of (Nf + B) is
(CDmin + B), when

∑N
i=1 Wi ≤ CDmin + B,

∑N
i=1 Wi ≤

Nf +B can be satisfied.
Thus, we can infer that as long as the summation of the

congestion windows of all the senders is between CDmax

and (CDmin+B), the aggregated throughput can achieve the
maximum capacity of the bottleneck link.

Since the switch buffer size B is much larger than the
product of the link capacity and the round trip propagation
delay in data center networks, if the buffer space B is assigned
to all the senders, obviously the bottleneck link can be fully
utilized. Besides, the fact that the allocated buffer size never
exceeds (CDmin +B) confirms that the injected packets will
not overwhelm the buffer associated with the bottleneck link.

Figure 1 shows a simple example to illustrate the basic idea
of SAB. Several senders transmit packets to some receivers.
Figure 1(a) shows that part of the bottleneck buffer space is
fairly divided among the passing flows. The congestion win-
dow value can be conveyed by the headers of data packets and
then be returned to the senders by the headers of ACKs. Figure
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Fig. 1. Basic idea of SAB. (a) Part of buffer space is fairly allocated to all the flows. (b) The flows inject packets according to their congestion windows.

1(b) illustrates that each sender injects packets according to
the allocated congestion window size. Due to the fact that the
BDP is much smaller than the allocated buffer size in data
centers, only a small proportion of the injected packets are
on the link, and most of them are accumulated in the switch
buffer. Thus, the bottleneck link will not be idle. The allocated
buffer space can be adjusted to keep full link utilization as well
as low queuing delay.

This fair allocation ensures that each short flow could
quickly obtain its fair share of bandwidth. In TCP, the conges-
tion window size of a long flow could achieve a quite large
value under the AIMD window evolution algorithm, while a
short flow only achieves a quite small congestion window
size due to its short duration. Long flows take up a large
occupancy of the bottleneck switch buffer, which causes that
the packets of short flows have to wait for a long time before
being forwarded by the switch. Generally, short flows, such as
web query flows, are delay-sensitive, while long flows, such
as file backup, can endure a period of latency [4]. Therefore,
long flows should give way to the short flows. The shortest
job first scheduling mechanism can satisfy this requirement.
However, it possibly causes the starvation of long flows.

SAB solves the problem well. It ensures that short and long
flows have the same congestion window in only one RTT.
Since long flows only take a quite small percentage in data
centers, less than one percent [25], the queuing delay caused
by long flows is small. Meanwhile, since the long flows are
transmitting packets all the time, they do not suffer starvation.

IV. DETAILS OF SAB

SAB is a window-based congestion control protocol like
TCP. The difference is that in TCP each sender dynamically
adjusts its window according to the network congestion feed-
back, while in SAB the switch assigns congestion window to
the passing flows.

Based on the analysis in the above section, if B > CDmax,
we could fairly allocate B to all the senders. However, the
simple allocation will lead to large queuing delay since most
of the allocated packets will be cached in the queue. Therefore,
in SAB, we let εB(0 < ε ≤ 1) be the available buffer space
for all the senders.

A. Protocol

SAB does not modify the TCP header. The window field in
the TCP header is designed to convey the advertised window
(awnd). In SAB, the field is used to convey the minimum of
awnd and the congestion window assigned by the switches.

1) Sender: Before transmitting a data packet, the sender
modifies the window field of the packet header to be 0xffff as
the initial window value. After receiving an ACK, according
to the window value taken by the ACK header, the sender
determines its congestion window.

2) Switch: The main task of the switches is computing the
congestion window for each passing flow. To do this, each
switch requires to maintain the number of passing flows, N ,
of each port, and modify the window field of passing data
packets to be the value calculated by the switch if needed.
In SAB, we use the handshake messages, SYN and FIN, to
maintain the number of flows N . N increases or decreases
by one after receiving a SYN or FIN message, respectively.
As mentioned at the beginning of this section, to keep high
utilization while small queuing delay, the bottleneck switch
allocates εB

N buffer space to each sender. Thus, when a data
packet passes through a switch, if the value in its window
field equals 0xffff or is larger than εB

N , then the switch needs
to update the value of the window field to be εB

N .
3) Receiver: The function of SAB at the receiver side is

almost the same as that of TCP. The only difference is that
in SAB, before transmitting an ACK for a data packet, the
minimum of awnd and the window value in the header of the
data packet is assigned to the window field of the ACK header.

B. Congestion Window of Less Than One

One special situation that less than one packet is allocated to
each sender when the number of senders is quite large should
be considered. Most of the prior work fails to properly deal
with this issue, such as DCTCP [4], D2TCP [17], ICTCP [11].
However, this situation indeed exists. Besides, it will become
more common in the large-scale data centers.

There are two main solutions to the problem. First, source i
sends one packet every 1

Wi
RTTs. To implement this solution,

exactly estimated RTT and a high resolution timer to count
RTT
Wi

are needed. Precise estimating RTT is difficult since
RTT is quite small. Second, transmitting one packet in a RTT
randomly selected from 1

Wi
ones. However, this method makes

the self synchronization mechanism fail. For example, if the
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congestion window of sender i is 0.5, then during each RTT,
no packet will be transmitted with probability of 0.5. If no
packet is transmitted during RTT j, then the sender will not
receive ACK any more. The self synchronization mechanism
fails.

To avoid these drawbacks, the MSS is proportionally re-
duced according to the congestion window at each sender in
the SAB algorithm. If the congestion window becomes larger
than 1 later, the MSS will go back to the normal value. This
simple method effectively avoids the congestion caused by too
many concurrent flows.

C. Choosing Parameter ε

The parameter ε determines the proportion of the assigned
buffer space. From eq. (1), we can infer that the assigned
buffer space εB should satisfy εB ≥ CDmax. Besides, ε is
not larger than 1. Therefore, ε should take values as follows:

CDmax

B
≤ ε ≤ 1 (2)

Note that eq. (2) assumes that the count of the number
of flows is accurate. However, precise counting will incur
large overhead if the number of flows is large. There are
some literature on how to estimate the number of active flows
using little memory with small estimation error [26], [27],
and fortunately SAB can endure the estimation error within
a certain range by adjusting the parameter ε. Next we will
analyze how to set the parameter ε if the number of flows, N ,
is estimated with some error.

Let N̂ be the estimated number of active flows passing a
switch. Define the estimation error η as η = |N−N̂|

N .
PROPOSITION 2: Given that the estimation error of the

active flows is η, the parameter ε should satisfy

(1 + η)
CDmax

B
≤ ε ≤ min{1, (1− η)

B + CDmin

B
}. (3)

The allowed maximum of the estimation error, ηmax, in SAB
is

ηmax =
B + CDmin − CDmax

B + CDmin + CDmax
. (4)

Proof. See Appendix A.
Given the upper bound of the estimation error of the

method that counts the number of active flows, we can
set proper ε. The allowed maximum estimation error in
SAB is usually quite large. For example, if C=1 Gbps,
Dmax=300 us, Dmin=100 us, B=512 KB, then CDmin=12.5
KB, CDmax=37.5 KB. Therefore, we have ηmax =
512+12.5−37.5
512+12.5+37.5 = 0.8665.

Probability of Packet Loss. Since SAB can endure the
estimation error as high as ηmax, it can be inferred that SAB
does not lose packets unless the estimation error exceeds
ηmax. Therefore, the probability of packet loss is Pr{drop} =

Pr{ N̂−N
N > ηmax}.

D. Work Conserving

In SAB, each flow injects packets according to the conges-
tion window assigned by switches. We have demonstrated that
it can achieve throughput as high as the maximum capacity
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Fig. 2. A scenario with multiple bottlenecks. The grayed ports are bottlenecks.
S, L, F represents the sets of flows from 1 → 2, 1 → 4, 3 → 4, respectively.

of the bottleneck link in scenarios with one bottleneck. When
multiple bottlenecks exist, is SAB work-conserving? that is,
whether SAB can fully utilize the available bandwidth at all
the bottlenecks?

Consider the scenario in Figure 2. Let Ns, Nl, Nf be the
number of flows in flow sets S,L, F , respectively. Assume
that R1 and R2 have the same buffer size.

Obviously, if Ns = Nf , the congestion window sizes of all
the flows are the same as that with only one bottleneck. The
capacity of links connecting to R1 and R2 can be both fully
utilized. However, if Ns �= Nf , eg. Ns < Nf , R1 will possibly
be under-utilized since the Nl flows inject fewer packets than
that allocated by R1. Next we will show under what conditions
both of them can be fully utilized.

Denote Nl = aNs = bNf (a > b). If the estimated number
of flows is precise and the estimation error tolerance is η. The
following proposition can be established.

PROPOSITION 3: If a and b satisfy

1

1 + a
+

b

1 + b
>

1

1 + η
, (5)

then both of the bottlenecks can be fully utilized.
Proof. See Appendix B.
Correspondingly, if a < η or 1

b < η, then eq. (5) is satisfied,
that is, when the ratio of the number of long flows Nl to that
of Ns is smaller than η, or the ratio of Nl to Nf is larger
than η, the under-utilization phenomenon will not happen. If
both a and 1

b are larger than η, then a and b should satisfy
that a−b

1+2b+ab < η.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

We set up different topologies to comprehensively test the
performance of SAB. The servers used in all the experiments
are DELL OptiPlex 360 desktops with Intel 2.93 GHz dual-
core CPU, 6 GB DRAM, 300 GB hard disk, and Intel
Corporation 82567LM-3 Gigabit Network Interface Card. The
operating system is CentOS-5.5. Each NetFPGA card hosting
in a DELL server has a buffer of 512 KB per port and four 1
Gbps ports. The output-buffer management scheme is used.

We validate the performance of SAB by comparing it
with TCP NewReno (with SACK), DCTCP and D2TCP.
The reason of choosing these three protocols is that
TCP NewReno is widely used in practice [28], and
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Fig. 3. Convergence and Fairness.

DCTCP as well as D2TCP are recently proposed well-
known transport protocols for data center networks. TCP
NewReno (with SACK) is implemented in the kernel
2.6.38.3 by configuring net.ipv4.tcp congestion control=reno
and net.ipv4.tcp sack=1. For DCTCP, we run the code shared
on-line [29]. D2TCP is implemented by modifying DCTCP.
The parameter d is limited between 0.5 and 2 as stated
in D2TCP [17]. For SAB and TCP, the queue management
scheme is DropTail. The threshold of marking packets in
DCTCP and D2TCP is 32 KB as recommended in [4]. In
SAB, ε is set to 1

2 .
Firstly, we evaluate the performance of the proposed SAB

in terms of the basic metrics of a transport protocol, including
throughput, convergence, fairness and so on. Then we show
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Fig. 5. Queue length of bottleneck buffer in the fairness scenario.

that SAB can reduce the latency of flows as well as solve the
TCP Incast and Outcast problems due to its advantages of fast
convergence and rare loss. In these scenarios, the flows do not
have deadline requirements. Thus, D2TCP performs the same
as DCTCP, and its results are omitted. At last, the performance
of SAB is compared with TCP, DCTCP and D2TCP in our
testbed with the practical traffic, which is generated according
to the traffic characteristic in DCTCP [4]. Each query flow and
short message has a deadline that is proportional to the flow
size. The background flows do not have deadlines.

B. Results

1) Basic metrics: First of all, we evaluate the three basic
metrics of a transport protocol, throughput, convergence and
fairness. We connect 4 hosts to a NetFPGA switch via 1
Gbps links. One of them acts as the receiver, while the
others sequentially connect to the receiver at the interval of
one second. The last started flow will be stopped first. The
throughput results are drawn in Figure 3. The throughput is
sampled every 10 milliseconds. We can see that the throughput
values of all the three protocols are close to the maximum of
the link capacity. However, in terms of the convergence rate,
SAB flows converge to their fair share of bandwidth more
quickly. The DCTCP and TCP flows, shown in Figure 3(b)
and 3(c) respectively, can also achieve their fair throughput,
but the throughput curves shake up and down. Especially the
throughput values of TCP flows fluctuate largely. DCTCP
flows converge more slowly than SAB flows do.

To show the detail more clearly, we magnify the throughput
curve of 200 milliseconds from the start of flow 2 in Figure



ZHANG et al.: SHARING BANDWIDTH BY ALLOCATING SWITCH BUFFER IN DATA CENTER NETWORKS 45

F

L

1
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4 → 5. R1 and R2 are bottlenecks.
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Fig. 7. Multi-Bottlenecks: Throughput of the flows passing bottleneck buffer
at switch R1.

4. DCTCP spends 50 milliseconds in evolving to the desired
value, i.e., 0.5 Gbps, which is too long for short flows. Since
most of them can be finished in 10 milliseconds [4]. Besides,
the congestion window size in DCTCP overshoots its fair
share since the throughput continually increases for a long
time (about 50 ms) instead of staying at the ideal value after
arriving at it. This is possibly because of the unfair marking
on different flows in DCTCP. The TCP flow converges quite
slowly. While the SAB flow immediately converges to the
expected throughput.

Figure 5 depicts the queue length evolution. At the first and
last 1 second, none of the three queues has backlog. During the
1-4 seconds, coexistence of multiple flows leads to backlog in
queues. TCP probes the maximum of the buffer size per port
and then decreases to about half of it. While both of DCTCP
and SAB have small and stable queue length.

2) Multiple bottlenecks: To evaluate whether SAB per-
forms well in multiple bottlenecks, we use the topology shown
in Figure 6 to conduct a series of experiments. Figure 7 and
Figure 8 present the throughput results of all the flows at
switch R1 and R2 when Ns = 10, Nl = 5, Nf = 15. In
Figure 7, the flows with IDs from 1 to 5 represent 5 long
flows, and the remainder 10 flows belong to flow set S. We
can see that the throughput difference of two TCP flows is
larger than that in SAB and DCTCP.

In Figure 8, flows with IDs from 1 to 5 are the long flows
and the flows with IDs from 6 to 20 belong to flow set F . The
difference between the throughput of each long flow and each
short flow is not large in SAB. This is because the RTT ratio of
a long flow and a short flow is (8×linkDelay+Q(R1)

C +
QR2

C ) :

(4×linkDelay+
QR2

C ), where Q(R)
C denotes the queuing delay

of R. Since the queuing delay at switch R1 is smaller than
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Fig. 9. Delay of different protocols with different flow size and 30 background
flows.

TABLE I
AGGREGATED THROUGHPUT AT SWITCHES R1 AND R2

SAB DCTCP TCP
R1 0.99 Gbps 0.93 Gbps 0.99 Gbps
R2 0.99 Gbps 0.95 Gbps 0.94 Gbps

that at switch R2, the RTT ratio of a long flow to a short flow
is smaller than 2. Thus, each long flow achieves more than
half of throughput of each short flow.

Table I shows the aggregated throughput at switches R1

and R2. The results are quite close to 1 Gbps with all the
three protocols. In SAB, switch R1 divides its buffer size by
15 and then assigns the result to each flow belonging to sets
S and L. However, the flows in set L will pass the second
bottleneck switch R2 after R1. Switch R2 reassigns smaller
congestion window to the passing flows. Therefore, at switch
R1, the long flows inject less traffic than that assigned by R1.
But R1 still achieves the maximum utilization at its bottleneck
link since SAB can tolerate that the injected traffic has some
difference from the expected amount, which is similar to the
impact caused by over-estimation of the number of flows.

3) Small delay: In the following experiments, we connect
four servers to a NetFPGA switch. Three of them respectively
transmit 10 long-lived flows to the fourth one. 10 seconds after
the long-lived flows being generated, one sender of the three
generates short flows with flow sizes ranging from 1 KB to
20 KB to the receiver in turn. By analyzing the experimental
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Fig. 10. Incast: Throughput of different protocols with different number of
flows.
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Fig. 11. Incast: Average number of lost packets per flow per second.

results, we find that all the goodput of the fourth receiver is
more than 0.99 Gbps. Figure 9 depicts the completion time
of the short flows with different sizes, showing that SAB
performs best. Because in SAB the flows grab their fair share
of bandwidth quite quickly, each flow can be finished within
fewer RTTs than TCP and DCTCP. The latency of TCP is the
largest, about 4 milliseconds. In DCTCP, the flows complete
in about 1 milliseconds since DCTCP maintains small queue
length.

4) Incast: Generally, the Incast traffic pattern happens in
a rack where one server acts as the receiver and the others
transmit synchronized blocks to it [11]. All the flows aggregate
at the same point, namely, the rack switch. To build up this
scenario using the NetFPGA switch with four ports, we let
three server generate multiple flows and the fourth one acts
as the receiver. The receiver requests a 256 KB block to each
sender. After receiving all the blocks, the receiver requests the
next blocks. The average throughput with different number of
flows is drawn in Figure 10. We can readily find that TCP
suffers throughput collapse after about 32 flows, which is
the same as the results with 1 Gbps link capacity, 256 KB
block size and 512 KB buffer size per port in [7]. DCTCP
performs better than TCP does. However, after 40 connections,
its throughput gradually decreases. While SAB performs well
and stable.

Figure 11 depicts the average number of packet losses
per flow per second with different number of flows. TCP

F

L

Fig. 12. Outcast: Topology.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

0.12

Flow ID
T

hr
ou

gh
pu

t (
G

bp
s)

 

 

SAB
DCTCP
TCP

Fig. 13. Outcast: Throughput.

1 32 4 65 7 98

HP Switch

Fig. 14. The testbed topology. The switchs are NetFPGA. Server 0 is the
controller of traffic generation.

loses the maximum packets. DCTCP sometimes loses many
packets when the number of flows is large. This is because
occasionally the end host cannot respond quickly enough to
the Incast burst. While SAB does not lose any packets since
the number of injected packets does not exceed the network
capacity. Besides, the bandwidth share is fair and thus no one
will delay the others.

5) Outcast: An Outcast scenario is built in this experiment
according to the configuration in [10]. Outcast happens when
the flows with different RTTs from different input ports are
transmitted to the same output port and the number of flows
with smaller RTTs is fewer. Generally, the flows with smaller
RTTs should obtain more bandwidth. However, in the Outcast
scenario, the throughput results exhibit inverse RTT bias.
Figure 12 shows the topology to test the TCP Outcast problem.
Denote Nf as the number of short flows F and Nl as the
number of long flows L. We conduct series of experiments
with different Nf and Nl. Note that when the number of flows
is larger than the number of servers, one server will generate
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Fig. 15. Outcast: Num of lost packets per flow per second.
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Fig. 16. Completion time of query flows.

multiple flows. TCP indeed suffers the Outcast problem when
Nl is several times of Nf , while SAB can effectively solve
the problem due to SAB’s feature of rare loss.

Figure 13 illustrates the throughput of different protocols
with Nf = 2 and Nl = 10. Flows with ID 1 and 2
represent the short flows, and the others are the 10 long flows.
Obviously, TCP suffers from the Outcast problem since Flows
with ID 1 and 2 have smaller RTTs but lower throughput.
Yet the flows with larger RTT get more bandwidth. SAB
effectively overcomes this problem. It still exhibits its fairness
as in other scenarios. As for DCTCP, the Outcast problem is
also mitigated, but is not eliminated. This is partly because the
marking operation in DCTCP generates port blackout as the
drop operation in TCP, that is, many packets of some flows
are unluckily marked while the packets of the other flows are
rarely marked [10].

Figure 15 illustrates the number of lost packets. In TCP,
the flows with smaller RTT lost many packets, more than the
flows with larger RTT. This can explain why TCP undergoes
the Outcast problem. DCTCP loses only several packets since
it maintains small queue size. SAB does not lose any packets.

6) Benchmark Traffic: We generated realistic traffic, in-
cluding query, short messages and background flows, based
on the cumulative distribution function of the interval time
between two arrival flows and the probability distribution of
background flow sizes in [4]. The distribution curves are gotten
based on a large amount of measured data from 6000 servers in
a real data center network [4]. The size of each query message
is 2 KB. The queries and short messages have deadlines that
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Fig. 17. 99.9th percentile completion time of background flows.
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Fig. 18. Transfer time per kilobytes of data.

are proportional to their flow sizes. The scale factor in our
experiment is 10 millisecond per kilobytes data, that is, the
deadline of a 2 KB query flow is 20 milliseconds. We did
experiments in a testbed as shown in Figure 14. The traffic
lasts 10 minutes, and is consist of 33 K flows.

Figure 16 shows the completion time of query flows. In
data centers, since the performance of parallel, delay-sensitive
applications is bounded by tail latency, the tail of the flow
completion time is an important metric. Therefore, we show
not only the mean of the flow completion time, but also the tail
values. Clearly, SAB performs much better than both DCTCP,
D2TCP and TCP, especially at the tail of the distribution. The
reason is that the query flows can quickly reach their fair share
of bandwidth, and the long flows do not form congestion at
the switch buffers in SAB. D2TCP works better than DCTCP
because it allocates more bandwidth to short flows.

Figure 17 presents the 99.9th percentile completion time of
the background flows with different flow sizes. SAB performs
better than DCTCP, D2TCP and TCP for flows smaller than
10KB, while it performs worse for flows larger than 10KB.
This is because the short flows in SAB can quickly get their
fair bandwidth, and the bandwidth taken by long flows per
unit time in SAB is less than that in DCTCP, D2TCP and
TCP. Therefore, long flows in SAB need more time to finish,
that is, with a constant network capacity, SAB decreases the
performance of long flows a little to make short flows complete
faster.

Now let’s see how SAB performs as a whole. We computed
the time required to transfer one kilobyte of data and depicted
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Fig. 19. Maximum link utilization of SAB and TCP.

the results in Figure 18. We can see that SAB transfers data
faster than DCTCP, D2TCP and TCP, that is, SAB utilizes
the network bandwidth more efficiently. The 99.9th percentile
value is almost the same as the mean value, which indicates
that the tail of SAB is relatively short.

VI. SIMULATIONS

We conducted experiments to evaluate the performance
of SAB in last section on a small-scale testbed due to the
limitation of equipments. To assess whether the proposed SAB
performs well in large-scale topologies, such as with higher
bandwidth 10 Gbps or more servers, we implemented SAB on
the ns-2 platform and evaluated its performance.

We conducted many series of simulations. Here only the
results of large-scale simulations with higher link capacity and
more senders are presented to show the scalability of SAB.
The parameters used in each simulation are described in the
corresponding subsections.

A. Impact of Capacity

With the proliferation of on-line services, data centers with
higher bandwidth have gained much attention in industry [30].
Can the proposed SAB be employed in future high-speed data
centers? Note that the fundamental assumption of SAB is
B > CD, that is, the buffer size of a switch port is larger
than the product of link bandwidth and round trip propagation
delay. Obviously, higher link capacity enlarges CD. However,
The buffer size also increases with higher link capacity. By
investigating the datasheets of different switches, we found
that the buffer size per port is almost positively proportional
to the port capacity. Taking the switch products of Cisco and
HP as examples, Cisco Catalyst 6500 Series 10G Ethernet
has 16-200 MB buffer memory per port [31]. HP 6600 series,
such as HP 6600-48G-4XG Switch (J9452), have about 4-9
MB buffer size per port [32]. The switch buffer size per port is
greatly larger than CD. Therefore, in the data center networks
with high-speed link, the condition required by SAB can still
be satisfied.

To further validate it, we conducted a series of simulations
with link capacities ranging from 1 Gbps to 100 Gbps. 1000
long-lived flows share a bottleneck link. Specifically, 1001
servers connect to a switch. 1000 of them act as senders, while
the other one is the receiver. ε is set to 0.6. The round trip
propagation delay is 100 microseconds. We take conservative
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Fig. 20. TimeOut periods suffered by one flow per second.

buffer size, that is, the buffer size for 100 Gbps is 3MB. To
conform with the positive proportional relationship between
the commodity switch buffer size and the port capacity, we
construct a function of the link capacity C in units of Gbps
to determine the buffer size per port, B = (300C+3000)/11
KB. Using this function, B = 300 KB when C = 1 Gbps, and
B = 3 MB when C = 100 Gbps. Note that when conducting
simulations on ns-2 with higher link capacity, the window
value at the receiver side needs to be enlarged so that it will
not clamp the sending window.

Figure 19 depicts the aggregated throughput of SAB and
TCP. We can see that SAB works well with different link
capacities, and the maximum link utilization of SAB is a little
higher than TCP.

Although TCP performs well in terms of the aggregated
throughput. It incurs many timeouts as shown in Figure 20.
If a short flow unfortunately encounters even if one timeout,
its completion time will be largely increased. Timeouts do not
happen in SAB in various link capacities. This is desirable to
reduce the latency of short messages.

B. Impact of Rate Limitation

To evaluate the performance of SAB with rate limitation at
the application layer. We use the topology shown in Figure 6
to conduct a series of simulations. We let Ns = 300, Nl =
200, Nf = 200. Figure 22 shows the throughput results of the
flow sets without rate limitation and with rate limitation of
150 Mbps on the long flow set L. On the left, without rate
limitation, the long flows can obtain about 270 Mbps band-
width. Flow sets S and F take about 720 Mbps, respectively.
Then we set the rate limitation of the flow set L to 150 Mbps.
We can see that the flow sets S and F accordingly increase
their throughput to about 840 Mbps, that is, the bottleneck
links at the switches R1 and R2 are still fully utilized. This
is because the flows with rate limitation inject fewer packets,
which reduces the queuing delay. However, the number of
packets injected by the other flows during each round trip time
keeps the same. Since the throughput of a flow is inversely
proportional to RTT, the throughput of the flows without rate
limitation increases.

C. Impact of ε

In Section IV-C, we have stated how to set the parameter ε.
To comprehensively see the impact of ε on the throughput and
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Fig. 22. Without (left) or with (right) rate limitation on flow set F.

the queue length, we let 100 servers communicate with one
server with different ε. The bottleneck buffer size is B = 128
KB. The packet size is 1 KB. The capacity C = 1 Gbps
and the round trip propagation delay D = 100 us. Figure
21 depicts the normalized goodput and queue length at the
bottleneck port. We can see that when ε ≥ 0.1, the network
capacity can be fully utilized. This is because 0.1B = 12.8
KBytes, which is greater than CD = 12.5 KBytes. With
respect to the queue length, the values at the bottleneck switch
in simulations approximately equal εB − CD except from
ε ≥ 0.9. Because when ε < 0.9, we have εB < 100 KB. Thus,
each sender’s congestion window is smaller than one. Then the
MSS will be reduced to be the allocated bandwidth. Therefore,
the summation of injected packets equals εB and thus the
queue length is close to εB − CD. While when ε ≥ 0.9, the
decimal part of the congestion window is ignored, thus, the
queue length in simulation is smaller than the computed value.

D. Practical Traffic

We generated practical traffic according to the traffic char-
acteristics described in [4] on the ns-2 platform. Then we
conducted simulations in a topology similar to Figure 14, but
with more servers and higher link bandwidth. The simulated
data center topology has 20 racks, each rack has 20 servers.
The capacity of each link within a rack is 1 Gbps. The capacity
of one link between a rack switch and the core switch is 10
Gbps.

Figure 23 shows the flow completion time of queries with
different protocols. We can see that SAB performs much better
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Fig. 24. Completion time of background flows in large topology.

than D2TCP, DCTCP and TCP. On average, each query flow
in SAB is completed 0.01 milliseconds faster than in D2TCP
and 0.02 milliseconds faster than in DCTCP. The benefits of
SAB is more obvious in terms of the tail latency suffered by
each query flow. Particularly, the 99.9th percentile tail latency
in D2TCP is smaller than in SAB. However, the 99.99th
percentile tail latency in D2TCP is much larger than its 99.9th
percentile tail latency, which indicates that D2TCP provides
some benefits in terms of reducing the flow completion time
of deadline-critical flows. However, it possibly sacrifices the
performance of some other deadline-critical flows. The tail
latency of SAB is quite small since each flow can obtain its fair
bandwidth using only one RTT. We can see that the 99.99th
percentile tail latency in SAB is almost the same as its 99.9th
percentile tail latency. The tail latency of TCP is quite high.
This is because TCP is a loss-driven protocol. Since the query
flow size is 2KB, any packet dropping can only be recovered
by timeouts. The default minimum timeout value, RTOmin, in
TCP is 200 milliseconds. If an unfortunate flow encounters a
timeout, the flow completion time will become quite large.

Figure 24 plots the flow completion time of background
flows with different protocols. SAB, D2TCP and TCP perform
almost the same. The 95th percentile tail latency of SAB is a
little larger than D2TCP and DCTCP since the query flows in
SAB take more bandwidth than in D2TCP and DCTCP. TCP
performs worst due to many timeout periods.
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VII. CONCLUSION

Data center networks have an unique feature that the
buffer size is larger than the BDP. The proposed transport
protocol in this paper, called SAB, is a simple yet effective
algorithm exploiting the benefits of this feature. In SAB,
switches determine the congestion window of each flow by
allocating their buffer space. Since the buffer size is larger
than the BDP, the bottleneck capacity can be fully utilized.
SAB converges fast because the end hosts can obtain their
fair share of bandwidth in only one RTT. Besides, SAB rarely
loses packets because the number of injected packets is smaller
than the network capacity and MSS will be reduced when the
congestion window is smaller than one. SAB is implemented
on a NetFPGA-based testbed as well as the ns-2 platform.
The experiment and simulation results demonstrate that SAB
indeed converges fast and does not suffer from the TCP Incast
and Outcast problems due to its property of rare loss.

APPENDIX

A. Proof of PROPOSITION 2.
Proof. Since the window size of each flow is set to εB

N̂
,

the summation of the congestion window size of all the flows
passing switch r is

∑N
i=1 Wi =

εB
N̂
N = εB 1

1±η .
According to eq. (1), to fully utilize the bottleneck link,

the summation of the windows of all the flows should satisfy
CDmax ≤ εB

1±η ≤ B + CDmin. Therefore, we can get that
εB ∈ [(1 + η)CDmax, (1− η)(B +CDmin)]. Thus, we have

(1 + η)
CDmax

B
≤ ε ≤ min{1, (1− η)

B + CDmin

B
} (6)

Because (1+η)CDmax ≤ (1−η)(B+CDmin), we obtain
that the maximum allowed estimation error is

ηmax =
B + CDmin − CDmax

B + CDmin + CDmax
(7)

B. Proof of PROPOSITION 3.
Proof. Since Ns < Nf , the long flows inject fewer packets

than that allocated by switch R1. According to PROPOSI-
TION 1, as long as the number of packets that arrive to R1

is larger than CDmax, that is,

εB(
Ns

Ns +Nl
+

Nl

Nl +Nf
) > CDmax (8)

the link associated with the switch R1 can be fully utilized.
Since the estimation error tolerance is η. a and b should satisfy
1

1+a + b
1+b > 1

1+η .
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