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Abstract—In this paper, we investigate the Frequency Domain Packet Scheduling (FDPS) problem for 3GPP Long Term Evolution

(LTE) Uplink (UL). Instead of studying a specific scheduling policy, we provide a unified approach to tackle this issue. First, we

formalize a general LTE UL FDPS problem, which is suitable for various scheduling policies. Then, we prove that the problem is MAX

SNP-hard, which implies that approximation algorithms with constant approximation ratios are the best that we can hope for.

Therefore, we design two approximation algorithms, both of which have polynomial runtime. The first algorithm is based on a simple

greedy method. The second one is based on the Local Ratio (L-R) technique and it can approximately solve the LTE UL FDPS problem

with an approximation ratio of 2. To further analyze the stability of the 2-approximation L-R algorithm, we derive a specific FDPS

problem, which incorporates the queue length and channel quality information. We utilize the Lyapunov Drift to prove the L-R algorithm

is stable for any ð!0; �0Þ-admissible LTE UL systems. The simulation results indicate good performance of the L-R scheduler.

Index Terms—Long term evolution (LTE), uplink (UL), frequency domain packet scheduling (FDPS), Optimization Algorithm,

approximation ratio, local ratio, stability analysis, Lyapunov drift, ð!; �Þ-admissible

Ç

1 INTRODUCTION

THE Third Generation Partnership Project (3GPP) Long

Term Evolution (LTE) standardization is the next
forward step in cellular network services. The objective of

LTE is to achieve a high peak-data-rate that scales with

scalable system bandwidths, system capacity and cover-

age improvements, spectrum efficiency, latency reduction,

and packet optimized radio access [2]. An architecture of

LTE network is depicted in Fig. 1. Its functionality is

divided into three main domains: User Equipment (UE),

Evolved UMTS Terrestrial Radio Access Network (EU-
TRAN), and System Architecture Evolution (SAE) core,

also known as Evolved Packet Core (EPC). EUTRAN,

which consists of enodeBs, is similar in function to the

combination of nodeB and radio network controller (RNC)

in the traditional UTRAN. This simplification is beneficial

to reduce the latency of all radio interface operations. The

eNodeBs are connected by the X2 interface, and they

connect to EPC networks using the S1 interface. The EPC
network serves as the equivalent GPRS networks via three

components, i.e., Mobility Management Entity (MME),

Serving Gateway (SGW), and PDN Gateway (PGW). The

MME provides tracking and paging for idle mode UEs.

The SGW provides switching and routing for user data

packets. The PGW provides access to external networks,
such as the Internet.

Because of the robustness against multipath fading,
higher spectral efficiency, and bandwidth scalability, the
Orthogonal Frequency Division Multiplexing Access
(OFDMA) has been selected for the LTE Downlink (DL)
[3]. However, OFDM has a high Peak-to-Average Power
Ratio (PAPR), which is undesirable and inefficient for the
UE terminal and drains the battery very fast [4], [5]. Thus
a precoded version of OFDM, the Single-Carrier Frequency
Division Multiplexing Access (SC-FDMA) is selected for
the LTE Uplink (UL) [5], [6], [7]. SC-FDMA retains the
multipath resistance and flexible subcarrier frequency
allocation offered by OFDM. Moreover, it has a signifi-
cantly low PAPR like traditional single-carrier formats
such as GSM, which compensates for the drawback with
normal OFDM. For the UL, LTE provides the user speed
up to 50 Mbps in a 20-MHz channel [5].

Both in the LTE DL and UL, the system bandwidth is
divided into separable chunks denoted as Resource Blocks
(RBs) (see Fig. 1). An RB is considered as the minimum
scheduling resolution in the time-frequency domain. The
Frequency Domain Packet Scheduling (FDPS) allocates
different RBs to individual users according to their current
channel conditions, queue lengths, and other information.
The FDPS policy is conducted during each Transmission
Time Interval (TTI, in LTE, 1TTI = 1 ms). The UL SC-FDMA
is achieved by the FDPS assignment of different frequency
portions of bandwidth, which simultaneously realizes
frequency-domain multiplexing in concert with time-do-
main scheduling.

The FDPS algorithm plays an important role for the
system performance of LTE. Unfortunately, the excellent
scheduling policies in conventional cellular networks can be
hardly adopted in the LTE UL system. Most of all, SC-FDMA
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induces the continuous allocation constraint for the FDPS [8].
Namely, the LTE UL FDPS requires all the RBs allocated to a
single user must be contiguous in frequency domain within
each TTI (see the Uplink in Fig. 1), because the underlying
waveform of SC-FDMA is essentially single carrier [6].
Hence, it becomes harder to perform appropriate resource
scheduling for the LTE uplink.

The LTE UL FDPS problem has been addressed in
existing literature. Lim et al. [9] propose two utility-based
scheduling schemes for SC-FDMA systems. Afterwards,
this work was improved by taking the delayed channel state
information into consideration [10]. Ruiz de Temino et al.
[11] propose three channel-aware scheduling algorithms to
address the localized RB allocation. Lee et al. [12] formalize
the proportional-fair (PF) FDPS problem (PF-FDPS) for the
LTE uplink as a combinatorial optimization problem and
prove that the problem is NP-hard. They propose four
approximation algorithms based on heuristics and conduct
an extensive simulation study on the performance of the
four heuristic algorithms. The performance of three distinct
schedulers for LTE uplink are compared in [13]. However, it
mainly focuses on the impact of flow-level dynamics
resulting from the random user behavior.

However, the selection of the scheduling policy for a
specific LTE UL system depends on a case by case analysis,
which is not the focus of our work. In this paper, rather than
a particular scheduling policy, we present a unified
approach to tackle the LTE UL FDPS problem. We define
the profit function that indicates the profit gained by
allocating a set of contiguous RBs to an active user. The
profit function is capable of expressing various scheduling
objectives, including the PF metric [12] and scheduling
policies that combine utility maximization and queue
stability [14]. Based on the profit function, we formalize a
general FDPS problem for the LTE UL that can cover many
LTE UL scheduling objectives.

Furthermore, we address the hardness of the LTE UL
FDPS problem. We prove that the scheduling problem is
MAX SNP-hard, which means that the problem is improb-
able to efficiently approximate within a certain ratio.
Accordingly, the approximation algorithms with constant
approximation ratios are the best solutions that we can hope
for. Subsequently, we design two approximation algorithms
in company with provable approximation ratios, which
solve the LTE UL FDPS problem in polynomial runtime.

The first algorithm is based on a greedy method. It is
intuitive and easy to follow, but its approximation ratio is
bounded by a slowly increasing function of the number of
active users. The second one is designed on the basis of the
Local Ratio technique [15], and is called L-R Algorithm
hereafter. Although the L-R Algorithm is relatively sophis-
ticated, it achieves a constant approximation ratio of 2.

The assumption of an infinitely backlogged model in
scheduling analysis is conventional in many literatures,
which implies there are always arrival packets to serve.
However, this is not always the case in practical systems. In
real networks, packets are generated for each user in
accordance with a stochastic arrival process with respect to
applications. Andrews [16] makes a survey of scheduling
theory in wireless networks with system stability considera-
tions in cases of infinite and finite backlog. In the follow-on
work [14], Andrews and Zhang analyze the multicarrier
situation, where finite queues are fed by an admissible
arrival process, and point out the PF scheduler does not
work so well. In particular, it can result in the instability of
queues [17]. Provided that the schedulers have no idea of the
queues length, they may even schedule an empty queue
though its channel quality is good. Meanwhile, the queue
full of packets may have no chance to send once it faces a bad
channel condition. In those two unfavorable situations, the
queues are not stable in a bounded length. Therefore, it is
preferable to take system utility maximization and queuing
stability into account simultaneously when we design
scheduling algorithms. Besides, the well-known MaxWeight
algorithm is generalized from the single-carrier settings to
accommodate a number of natural optimization problems in
the multicarrier settings [14]. Moreover, the hardness of
these problems are stated and the simple algorithmic
solutions are designed with provable performance bounds,
which exactly keeps the queuing system stable.

Since the L-R Algorithm achieves a fairly good perfor-
mance, it is worthy to investigate the stability of the
algorithm. We specify the profit function to incorporate the
queue length and channel quality information, and thus
formalize a specific LTE UL FDPS problem. Because the
specific problem is a special case of the general problem, the
L-R Algorithm can also be applied with the same approx-
imation ratio of 2. Similar to the methodology used in [14],
we utilize the Lyapunov Drift to prove the queuing stability
for the L-R Algorithm in case of finite buffer and arbitrary
arrival process. First, we extend the definition of ð!; �Þ-
admissible system to the LTE UL multi-carrier scenario. The
ð!; �Þ-admissible explicitly describes the basic propositions
of some LTE UL systems, which will be stably scheduled by
the feasible FDPS algorithms. We assume that the optimal
scheduler for LTE UL FDPS is stable for any ð!; �Þ-
admissible LTE UL systems. Then, the Lyapunov drift is
computed and the queuing stability of the L-R Algorithm is
proved in any ð!0; �0Þ-admissible LTE UL systems. Finally,
The values of !0 and �0 are calculated.

The remainder of the paper is organized as follows:
Section 2 introduces the necessary background in the theory
of approximation and complexity. Section 3 gives the
system model we study and formalizes the LTE UL FDPS
problem. Section 4 proves the LTE UL FDPS problem is
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Fig. 1. The architecture of 3GPP LTE network.



MAX SNP-hard and shows polynomial time approximation
algorithms with guaranteed approximation ratios are
necessary for practical LTE UL systems. In Section 5 and
6, respectively, we give two approximation algorithms
computable in polynomial time and find out their approx-
imation ratios. Section 7 analyzes the queuing stability of
the 2-approximation L-R Algorithm. The performance of the
L-R Algorithm is evaluated in Section 8. Finally, we conclude
the paper in Section 9.

2 PRELIMINARIES

In this section, we provide a brief introduction to the theory
of both optimization and stability used in this work.

2.1 Approximation Ratio of an Approximation
Algorithm

In practice, many optimization problems are NP-hard,
which means that exact solutions of these problems are
widely believed to be time consuming. This necessities
efficient approximation algorithms that always compute
solutions close to the optimum. However, different approx-
imation algorithms can achieve different degrees of
approximation for the same problem. So, we introduce the
definition of approximation ratio to qualify the degree of
approximation achieved by an approximation algorithm.

Assume that G is an instance of a maximization
problem.1 We denote the size of its input by jGj and its
optimal value by OPT ðGÞ. Let ALG be an approximation
algorithm for the maximization problem. For instance G, we
denote the value of ALG by ALGðGÞ. We say that ALG has
an approximation ratio of �ðjGjÞ [18] if, for any instance G,
OPT ðGÞ is within a factor of �ðjGjÞ of ALGðGÞ:

OPT ðGÞ � �ðjGjÞ �ALGðGÞ:

We also call ALG a �ðjGjÞ-approximation algorithm. When
the approximation ratio is independent of the input size jGj,
we will use the terms approximation ratio of � and �-
approximation algorithm, indicating no dependence on jGj.

Note that �ðjGjÞ (or �) always � 1, and a smaller value of
�ðjGjÞ (or �) indicates that the approximation algorithm has
a better performance in a worst-case sense. In particular,
when � ¼ 1, the approximation algorithm ALG essentially
finds the optimal solution for any instance G.

2.2 Polynomial-Time Approximation Scheme
(PTAS)

A polynomial-time approximation scheme [18] for a
maximization problem is an approximation algorithm that
takes as an input not only an instance of the problem, but
also a value � > 0 such that for any fixed �, the scheme is a
ð1þ �Þ-approximation algorithm, which is computable in
polynomial time in the size of the input instance.

In a technical sense, a PTAS is the best one can hope for
an NP-hard optimization problem, assuming P 6¼ NP .

2.3 L-Reduction

Suppose that A and B are maximization problems. An
L-reduction [19] from A to B is a pair of functions R and S,

both computable in polynomial time, with the following
two additional properties:

First, if X is an instance of A with optimum OPT ðXÞ,
then RðXÞ is an instance of B with optimum OPT ðRðXÞÞ
that satisfies

OPT ðRðXÞÞ � � �OPT ðXÞ; ð1Þ

where � is a positive constant.
Second, if s is any feasible solution of RðXÞ, then SðsÞ is a

feasible solution of X such that

OPT ðXÞ � VALðSðsÞÞ � � � ðOPT ðRðXÞÞ � V ALðsÞÞ; ð2Þ

where � is another positive constant particular to the
reduction and VAL denotes the value of the feasible
solution in both instances. Equation (2) guarantees that S
returns a feasible solution of X, which is not much more
suboptimal than the given solution of RðXÞ. In particular, if
s is the optimal solution of RðXÞ, then SðsÞ is the optimal
solution of X.

L-reductions have the composition property [19]:

Lemma 1. If ðR;SÞ is an L-reduction from problem A to problem
B, and ðR0; S0Þ is an L-reduction from problem B to problem C,
then their composition ðR �R0; S0 � SÞ is an L-reduction from
A to C.

2.4 MAX-SNP Hardness

In computational complexity theory, SNP (from Strict NP) is
a complexity class containing a limited subset of NP based
on its logical characterization in terms of graph-theoretical
properties. The class MAX SNP is a subset of optimization
problems derived from SNP. The formal definition of MAX
SNP can be found in [19]. A problem is said to be MAX
SNP-hard if all MAX SNP problems can be L-reduced to
this problem. MAX SNP-hard problems are hard to
approximate. It is shown in [19] that

Lemma 2. Any MAX SNP-hard problem does not have a PTAS
unless P ¼ NP .

Suppose A is a known MAX SNP problem, thus all the
MAX SNP problems can be L-reduced to A. Once B can be
L-reduced fromA, according to the composition property in
Lemma 1, all the MAX SNP problems can also be L-reduced
to B, which indicates B is MAX SNP-Hard. In other words,
to prove that a problem B is MAX SNP-hard, it suffices to
present an L-reduction from a known MAX SNP-hard
problem A to B.

2.5 Job Interval Selection Problem with k Intervals
per Job

The job interval selection problem with k intervals per job
(JISPk) is stated as follows [20]:

Input. We are given n job, each of which is associated
with k intervals on the real line. Thus, we have k � n
intervals. For each interval l a starting time sl and a
finishing time flð>slÞ is known, l ¼ 1; . . . ; k � n. All starting
and finishing times are integers. An interval is said to be
active at time t if and only if t 2 ½sl; flÞ. Two interval
intersect if and only if there is a time t during which both
intervals are active.

2414 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

1. We focus on maximization problems in this paper because LTE UL
FDPS is a maximization problem.



Goal. Select as many intervals as possible such that 1) for
each job, at most one interval is selected from its associated
k intervals, and 2) no two selected intervals intersect.

Measure. The number of intervals selected.
Spieksma [20] presents an L-reduction from MAX-

3SAT-B to JISP2. Since MAX-3SAT-B is MAX SNP-hard
[19], according to Lemma 1, [20] essentially proves that

Lemma 3. JISP2 is MAX SNP-hard, and hence it does not have a

PTAS unless P ¼ NP .

In the JISPk, k is a parameter of problem. In this paper,
we refer to the JISP2 problem, namely, k ¼ 2.

2.6 Local Ratio for Scheduling Problems

The local ratio technique is a methodology for the design
and analysis of algorithms in a broad range of optimization
problems. It is first developed by Bafna et al. [21], later
extended by Bar-Yehuda [22], both of which treat mini-
mization covering problems. Bar-Noy et al. [15] present the
first local ratio algorithm for maximization problems. Bar-
Yehuda and Rawitz, [23] develop a novel extension of the
technique, called emphfractional local ratio.

Local ratio can be utilized to solve the profit maximiza-
tion problem, that is, given a profit vector p 2 IRn, to find a
solution vector x that maximizes the inner product p � x,
subject to a given set IF of feasibility constraints on x. The
fundamental Local Ratio Theorem for maximization pro-
blems is presented next, with proof omitted.

Theorem 1 (Local ratio). Let IF be a set of constraints and let

p, p1, and p2 be profit vectors such that p ¼ p1 þ p2. Then, if

x is an r-approximation solution with respect to ðIF; p1Þ and

with respect to ðIF; p2Þ, it is an r-approximation solution with

respect to ðIF; pÞ.

A massive applications of the technique are solving
the Machine Scheduling problem. The resource consists of
k parallel machines and the activities are jobs to be
scheduled on these machines. Each job can be scheduled
in one of several time intervals. The goal is to maximize
the profit of the executed jobs. There are several subcases
to this problem, including Interval Scheduling, Indepen-
dent Set in Interval Graphs, k-Colorable Subgraph,
Parallel Unrelated Machines, and Scheduling with Release
Times and Deadlines. Besides, the technique can be used
for Bandwidth Allocation. The problem aims at finding the
most profitable set of sessions that can utilize the
available bandwidth. A 5-approximation algorithm based
on local ratio is designed to tackle it. The above problems
are all for profit maximization, which is similar to the
LTE UL FDPS problem that we focus in this paper. Due
to the page limits, other applications of local ratio, for
example, the Loss Minimization and the detailed survey
can be found in [24].

2.7 Lyapunov Stability Analysis

According to [25], the definition of system stability and its
sufficient conditions are presented. Suppose the state space
is partitioned in the sets T;R1; R2 . . . , where Rj; j ¼ 1; 2 . . . ,
are closed sets of communicating states and T contains all

states that do not belong to any closed set of communicating
states and therefore are transient.

Definition 1. The system is stable if for the queue length

process Y, we have

P ð�y <1Þ ¼ 1 8y 2 T;

where �y is the recurrent time and all states y 2 [1j¼1Rj are

positive recurrent.

Theorem 2 states the sufficient conditions for system
stability based on Definition 1. Those conditions involve
the drift of a Lyapunov function on the state space of a
Markov chain.

Theorem 2. Consider a Markov chain MðtÞ with state spaceM.

If there exists a lower bounded real function V :M! IR,

� > 0 and a finite subset M0 of M such that

E½V ðMðtþ 1ÞÞ � V ðMðtÞÞ jMðtÞ ¼ y� � �� if y 62 M0

E½V ðMðtþ 1ÞÞ jMðtÞ ¼ y� <1 if y 2 M0;

then for the time �y in Definition 1, we have

P ð�y <1Þ ¼ 1 8y 2 T;

and all states y 2 [1j¼1Rj are positive recurrent.

The detailed introduction and formal definition of the
Lyapunov stability theory can be found in [26].

3 PROBLEM FORMALIZATION

3.1 System Model

We consider the uplink of cellular network, where the
system bandwidth is divided into m RBs. Besides, the
network has a single base station and n active wireless
users. We denote the set of all RBs by M (M ¼ f1; 2; . . . ;mg)
and the set of all users by N (N ¼ f1; 2; . . . ; ng). Within each
TTI, the FDPS allocates m RBs to n users in a contiguous

fashion. Namely, a set of contiguous RBs is distributed to
each user while the empty set of RBs to a user means he is
not scheduled in this round. Specifically, each RB is
assigned to at most one user. Fig. 2 illustrates an example
of a feasible FDPS scheduling for the LTE UL.

We denote by A the collection of all sets of contiguous
RBs, where A � PðMÞ. PðMÞ represents the power set of
M, i.e., the collection of all subsets of M and 8a 2 A,
a ¼ fc; cþ 1; . . . ; cþ lg, 1 � c � cþ l � m. For a; b 2 A, we
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Fig. 2. A feasible FDPS scheduling for the LTE uplink. m ¼ 12; n ¼ 5.
The shadow (user, RB) pairs denote the RB-to-user assignment of the
feasible schedule. Note that the RBs assigned to each user must be
contiguous in frequency domain.



call a intersects b if a \ b 6¼ ;. 8a 2 A, we use headðaÞ to
denote the smallest RB of a, and tailðaÞ the largest RB of a.
The Boolean variable xai is used to indicate whether or not
the set of contiguous RBs a is assigned to user i. User i gets
the set a 2 A if and only if xai ¼ 1.2

We define the profit function as follows:

pða; iÞ : A�N ! IR;�02

where pða; iÞ indicates the profit gained by assigning a 2 A
to user i in a feasible schedule (in one TTI).

The profit function pða; iÞ is a general term and might
vary with different schedulers. We can exploit it to model
various specific scheduling algorithms. For example,
pða; iÞ ¼

P
c2a �

c
i is the Proportional Fair scheduling objec-

tive studied in [12], where �ci is the PF metric value that
user i has on RB c. In addition, we can, respectively, express
the three objective functions in [14] as

pða; iÞ ¼ Qi

X
c2a

Rc
i ; ð3Þ

pða; iÞ ¼ Qi min

�
Qi;
X
c2a

Rc
i

�
; ð4Þ

pða; iÞ ¼ ðQiÞ2 �
�

max

�
0; Qi �

X
c2a

Rc
i

��2

; ð5Þ

where Qi is the queue size for user i at the beginning of each
TTI, and Rc

i is the data rate for user i, RB c in this TTI. These
three objective functions combine throughput maximization
and queue stability together. In Section 7, we specify pða; iÞ
as (3) to incorporate the queue length and channel quality
information, and thus formalize a specific FDPS problem to
analyze the stability of our proposed scheduling algorithm.

3.2 LTE UL FDPS

We consider a general FDPS problem for the LTE uplink.
We are given an uplink system with m RBs and n users. In
one time slot, for each set of contiguous RBs a 2 A and each
user i, we have a profit pða; iÞ. Our goal is to schedule the
system for this time slot. In other words, we intend to find
the most advantageous way to assign an a 2 A to user i so
that the total profit is maximized. The LTE UL FDPS
problem is formalized as the following combinatorial
optimization problem:

max
X

ða;iÞ2A�N
pða; iÞ � xai

subject to :

for each RB c 2M :
X

i2N;a:c2a
xai � 1;

for each user i 2 N :
X
a2A

xai � 1;

for i 2 N; a 2 A : xai 2 f0; 1g:

ð6Þ

The first constraint shows that every RB is assigned to at
most one user, and the second constraint ensures that each

user can get no more than one set of contiguous RBs. In fact,
LTE UL FDPS aims to find a subset of A�N that maximizes
its total profit in a time slot, according to the scheduling
policy specified in the profit function. Problem (6) is a
binary integer programming and it is not hard to find that
the PF-FDPS problem studied in [12] is a special case of (6).

4 HARDNESS RESULTS

4.1 Hardness of (6)

It is not difficult to show that LTE UL FDPS is NP-hard. Lee
et al. [12] have shown that the LTE UL PF-FDPS problem, a
special case of LTE UL FDPS, is NP-hard. Furthermore, it is
straightforward to reduce the LTE UL PF-FDPS problem to
LTE UL FDPS (by simply setting pða; iÞ ¼

P
c2a �

c
i ). Thus,

LTE UL FDPS is NP-hard.
Furthermore, we have a stronger result here.

Theorem 3. LTE UL FDPS is MAX SNP-hard, and hence, it
does not have a PTAS assuming P 6¼ NP .

Proof. We prove this theorem by presenting an L-reduction
from JISP2 to LTE UL FDPS.

Assume that X is an instance of JISP2. X has n jobs,

and we denote them by J1; J2; . . . ; Jn. Job Ji has two

intervals, namely ½sð1Þi ; f
ð1Þ
i Þ and ½sð2Þi ; f

ð2Þ
i Þ. s

ðjÞ
i and f

ðjÞ
i are

integers, and f
ðjÞ
i > s

ðjÞ
i , j ¼ 1; 2, i ¼ 1; 2; . . . ; n.

Now, we construct function R. RðXÞ is defined as

follows: Let m ¼ maxi¼1;2; j¼1;...nffðjÞi g � 1. RðXÞ is an LTE

uplink system, which has n users and m RBs. N ¼
f1; 2; . . .ng is the set of active users. A is the set of all

contiguous RBs such that 8a 2 A, a ¼ fi; iþ 1; . . . ; iþ lg;
1 � i � iþ l � m. User i corresponds to job Ji, i ¼ 1;

2; . . . ; n, and the profit function p : A�N ! IR�0 is

defined as follows:

pða; iÞ ¼
1 if a ¼

�
s
ðjÞ
i ; s

ðjÞ
i þ 1; . . . ; f

ðjÞ
i � 1

�
;

j ¼ 1; 2;
0 otherwise:

8<
:

Since s
ðjÞ
i and f

ðjÞ
i are integers, and f

ðjÞ
i > s

ðjÞ
i , j ¼ 1; 2,

i ¼ 1; 2; . . . ; n, the profit function p is well defined.
Next, we construct function S. Assume that s is a

feasible solution of RðXÞ. s can be written as fðai; uiÞ j
i ¼ 1; 2; . . . ; k; ai 2 A; ui 2 Ng. We define psupp ¼ fða; iÞ j
pða; iÞ ¼ 1; ða; iÞ 2 A�Ng. Let s0 ¼ s \ psupp. Obviously,
s0 is also a feasible solution of RðXÞ such that each
element of s0 has a positive profit. That is, in s0, each user
at most selects one set of contiguous RBs and no two ais
appearing in s0 intersect.

According to the definition of the profit function p,
8ðai; uiÞ 2 s0, job Jui is associated with an interval
½headðaiÞ; tailðaiÞ þ 1Þ in X. Therefore, SðsÞ is defined as

SðsÞ ¼ f ½headðaiÞ; tailðaiÞ þ 1Þ; Juið Þ j ðai; uiÞ 2 s0g:

We use the pair ð½headðaiÞ; tailðaiÞ þ 1Þ; JuiÞ to denote
that in SðsÞ, job Jui selects the interval ½headðaiÞ; tailðaiÞ þ
1Þ. Since s0 is a feasible solution of RðXÞ, correspondingly
in SðsÞ, each job at most selects one interval, and no two
selected intervals intersect. So, SðsÞ is a feasible solution
of X. Thus, function S is well defined.
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Now, we check (1). Assume that s0 is the optimal
solution of RðXÞ, and define s00 ¼ s0 \ psupp. Apparently,
we have

VALðs00Þ ¼ VALðs0Þ ¼ OPT ðRðXÞÞ;

where VALðs00Þ and V ALðs0Þ denote the values of

solutions s00 and s0, respectively. We know that Sðs0Þ is

a feasible solution of X, and we have

VALðs00Þ ¼ VALðSðs0ÞÞ � OPT ðXÞ:

Thus, we have OPT ðRðXÞÞ � OPT ðXÞ. So, (1) holds

(� ¼ 1).
Then, we check (2). Let s be any feasible solution of

RðXÞ. Obviously, we have

VALðsÞ ¼ VALðs0Þ ¼ V ALðSðsÞÞ; ð7Þ

where s0 ¼ s \ psupp. Assume that r is the optimal

solution of X, and r ¼ fð½sui ; fuiÞ; JuiÞ; i ¼ 1; 2; . . . kg. In

RðXÞ, we can correspondingly construct s ¼ fðfsui ; sui þ
1; . . . ; fui � 1g; uiÞ; i ¼ 1; 2; . . . ; kg. In s, each user is

assigned to at most one set of contiguous RBs, and any

two sets of contiguous RBs do not intersect. So, s is a

feasible solution of RðXÞ. Moreover, since for RðXÞ,

pðfsui ; sui þ 1; . . . ; fui � 1g; uiÞ ¼ 1; i ¼ 1; 2 . . . ; k;

we have

OPT ðRðXÞÞ � V ALðsÞ ¼ V ALðrÞ ¼ OPT ðXÞ: ð8Þ

Combining (7) and (8), we have

OPT ðXÞ � VALðSðsÞÞ � OPT ðRðXÞÞ � VALðsÞ:

So, (2) holds (� ¼ 1).
Thus, ðR;SÞ is an L-reduction from JISP2 to LTE UL

FDPS. Since JISP2 is MAX SNP-hard, LTE UL FDPS is
also MAX SNP-hard and it does not have a PTAS unless
P ¼ NP . tu

Theorem 3 is somewhat devastating, because the non-

existence of PTAS implies that for some constant 	 > 0,

there are no polynomial time ð1þ 	Þ-approximation algo-

rithms for LTE UL FDPS unless P ¼ NP . That is to say, we

could at most hope for approximation algorithms that have

constant approximation ratios.3

4.2 The Size of Search Space of (6)

Despite the fact that the LTE UL FDPS problem is MAX

SNP-hard, one may still be tempted to find the optimal

solution by an exhaustive search, because this approach does

not consume much computation power when the search

space is small, and enumerating all feasible schedules is

sufficient to find the optimal schedule.
In the following, we calculate the number of feasible

schedules for the exhaustive search in an uplink system,

which has m RBs and n active users. Assume that in a

feasible schedule, k out of n users are assigned to

contiguous RBs. These k sets of contiguous RBs are denoted

as a1; . . . ; ak such that 1 � headða1Þ � tailða1Þ < headða2Þ �
tailða2Þ � � � < headðakÞ � tailðakÞ � m. So,

1 � headða1Þ < tailða1Þ þ 1 < headða2Þ þ 1 < tailða2Þ
þ 2 � � � < headðakÞ þ k� 1 < tailðakÞ þ k � mþ k:

Thus, there is a 1-1 correspondence between the number of

choices of k sets of contiguous RBs and the number of 2k

integers fbi; i ¼ 1; 2; . . . ; 2kg such that 1 � b1 < � � � < b2k �
mþ k. So, the number of choices of k sets of contiguous RBs

is ðmþk2k Þ. After assigning k users to k sets of contiguous RBs,

we have ðmþk2k Þ � n!
ðn�kÞ! feasible schedules in which k active

users are assigned to contiguous RBs. So, the total number

of feasible schedules is

Xn
k¼0

mþ k
2k

� �
� n!

ðn� kÞ! >
mþ n

2n

� 	
� n! ð9Þ

In practical systems, the running time of an exhaustive

search is evidently unacceptable for one TTI (in LTE, 1TTI =

1 ms). In other words, the hardness result and the giant

search space of (6) imply that approximation algorithms

computable in polynomial time with guaranteed perfor-

mance is indispensable for the LTE UL FDPS problem. In

the subsequent sections, we present two polynomial time

approximation algorithms. The first one is intuitive and

easy to follow, but its performance declines slightly as the

number of active users grows. The second one is relatively

delicate, but achieves a better performance. The second

algorithm is derived from the local ratio technique [15].

5 A GREEDY STRATEGY-BASED ALGORITHM

Here, we present our first approximation algorithm. The

main idea of the heuristic algorithm is to divide the LTE

UL FDPS problem into several subproblems according to

the profit, and then apply a greedy method to each

subproblem. We prove that this algorithm has an approx-

imation ratio of OðlnnÞ, where n is the number of active

users in a cell.

5.1 A Special Scheduling Problem

We start from considering a special scheduling problem:

max
X

ða;iÞ 2 C�A�N
xai

subject to:

for each RB c 2M:
X

ða;iÞjða;iÞ2C;c2a
xai � 1;

for each user i 2 N:
X
ða;iÞ2C

xai � 1;

for each ða; iÞ 2 C: xai 2 f0; 1g:

ð10Þ

In this problem, a user i may not choose a set of

contiguous RBs arbitrarily, but from C, a collection of

legitimate sets of ða; iÞ pairs. All pairs of one user and one

of his legitimate sets of contiguous RBs constitute the

set C, which is a subset of A�N . In addition, pða; iÞ ¼ 1;

8ða; iÞ 2 C. That is, the goal of this problem is to schedule

as many users as possible in a time slot. Problem (10) also
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complies with the constraints on users and RBs of the LTE

UL FDPS problem.
JISPk problem studied in [20] is very similar to (10).

Based on [20], we provide a greedy algorithm for (10).

headðaÞ and tailðaÞ are the smallest and the largest RBs in

a 2 A, respectively.
The main idea of Algorithm 1 is straightforward. It takes

as an input C, a collection of admissible pairs of one user

and one set of contiguous RBs. The algorithm iteratively

selects an ða; iÞ, which has the smallest tailðaÞ until C is

empty. Algorithm 1 outputs G, a feasible schedule of (10).

The value of Algorithm 1 is jGj. According to a similar

Theorem in [20], we can obtain the following theorem. The

prove procedure is the same as that in [20], which is

therefore omitted here.

Algorithm 1. GREEDY.
1: input C
2: G ;, C  C
3: while C 6¼ ; do

4: ða	; i	Þ  arg minða;iÞ2CðtailðaÞÞ // break ties arbitrary

5: C  Cnfða; iÞ j i ¼ i	; or headðaÞ � tailða	Þg
6: G G [ fða	; i	Þg
7: end while

8: return G

Theorem 4. Algorithm 1 is a 2-approximation algorithm for (10).

Moreover, it can be shown that the approximation ratio of 2

is tight.

5.2 The Weighted Version of (10)

Then, we consider the weighted version of (10). We

associate each pair ða; iÞ 2 C with profit pða; iÞ, and change

the objective function to

max
X
ða;iÞ2C

pða; iÞ � xai : ð11Þ

The constraints of (11) are the same as those of (10). This

problem is analogous to LTE UL FDPS except that a

feasible schedule is selected from a subset C � A�N , not

from A�N itself.
We consider the following procedure that provides a

feasible solution for (11). For a subset C � A�N , we

ignore the profit function and run Algorithm 1, and then

get a feasible schedule G. Then, we compute WG ¼P
ða;iÞ2G pða; iÞ. We denote the optimal value of (11) by

W -OPT ðCÞ. The following lemma establishes the relation

between WG and W -OPT ðCÞ.
Lemma 4. If 8ða; iÞ 2 C, 0 < mp � pða; iÞ �Mp, then

W -OPT ðCÞ � 2Mp

mp
�WG.

Proof. If C ¼ ;, then the lemma holds vacuously. Otherwise,

we denote the optimal value of (10) by S-OPT ðCÞ, then

W -OPT ðCÞ �Mp � S-OPT ðCÞ. According to Theorem 4,

we have S-OPT ðCÞ � 2 � jGj, so W -OPT ðCÞ � 2Mp � jGj.
According to the proposed procedure, we have

WG � mp � jGj. Combining the above two equations,

we finally get W -OPT ðCÞ � 2Mp

mp
�WG. tu

5.3 The Approximation Algorithm

Taking Algorithm 1 as the subroutine, our first approxima-
tion algorithm for the LTE UL FDPS problem is stated as
follows (Algorithm 2).

Algorithm 2. GREEDY-BASED (G-B for short).

1: input m, n, p

2: pmax  maxða;iÞ2A�Npða; iÞ
3: partition A�N into kþ 1 subsets: S0; S1; . . . ; Sk such

that S0 ¼ fða; iÞ j pða; iÞ � pmax
n g and Sj ¼ fða; iÞ j

�j�1�pmax
n < pða; iÞ � �j�pmax

n g for j � 1

4: // � > 1 is a constant and k ¼ lnn
ln�


 �
. The specification

of � will be discussed in the proof of Theorem 5
5: for j ¼ 1 to k do

6: Gj  GREEDY ðSjÞ
7: WGj  

P
ða;iÞ2Gj

pða; iÞ
8: end for

9: j	  arg max1� j� kðWGjÞ
10: return Gj	 and WGj	

Algorithm 2 takes m;n; p as the input, where m is the
number of RBs, n is the number of active users, and
p : A�N ! IR�0. It first partitions all ða; iÞ pairs into kþ 1
subsets fSj; j ¼ 0; 1; . . . ; kg according to their profits. For
Sk; k � 1, Algorithm 2 invokes Algorithm 1 to obtain a
feasible schedule. Thus Algorithm 2 obtains k feasible
schedules, then it chooses the schedule that has the largest
total profit as the output.

Theorem 5. Algorithm 2 is an OðlnnÞ-approximation algorithm

for LTE UL FDPS, where n is the number of active users in

a cell.

Proof. For any instance S of (6), we denote the optimal

value by OPT ðSÞ and the return value of Algorithm 2 by

WGj	 . First, we show that OPT ðSÞ
WGj	

� �þ 2�
ln� lnn.

In Algorithm 2, all ða; iÞ pairs are partitioned into kþ
1 subsets fSj; j ¼ 0; 1; . . . ; kg. Each Sj with corresponding
profits can be regarded as an instance of (11), whose
optimal value is written as W -OPT ðSjÞ. Then, it is
obvious that

OPT ðSÞ �
Xk
j¼0

W -OPT ðSjÞ: ð12Þ

For j � 1, �j�1�pmax
n < pða; iÞ � �j�pmax

n ; 8ða; iÞ 2 Sj. So,
Lemma 4 indicates that W -OPT ðSjÞ � 2� �WGj; j � 1.
For j ¼ 0, because the number of users is n, the second
constraint of (6) tells us that W -OPT ðS0Þ � n � pmaxn ¼
pmax. Combining the above two equations, we turn (12)
into OPT ðSÞ � pmax þ 2�

Pk
j¼1 WGj. Note that fða; iÞ j

pða; iÞ ¼ pmaxg � Sk, so Sk 6¼ ;. Thus, WGk � �k�1�pmax
n . So,

we have

OPT ðSÞ � n

�k�1
WGk þ 2�

Xk
j¼1

WGj:

Since WGj	 ¼ max1�j�kWGj, we get

OPT ðSÞ � n

�k�1
þ 2� � k

� 	
�WGj	 � �þ 2�

ln�
lnn

� �
�WGj	 :

Thus,
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OPT ðSÞ
WGj	

� �þ 2�

ln�
lnn: ð13Þ

Furthermore, we can specify � in terms of n so that the
right side of (13) is minimized. Let

@ �þ 2�
ln� lnn

� 
@�

¼ 0;

then we get 1� 2n
ðln�Þ2 þ

2n
ln� ¼ 0. Since � > 1, we have � ¼

expð 2n
nþ
ffiffiffiffiffiffiffiffiffiffi
2nþn2
p Þ. Substituting this expression of � into (13),

we finally get

OPT ðSÞ
WGj	

� exp
2 lnn

lnnþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnnð2þ lnnÞ

p
 !

�

1þ lnnþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnnð2þ lnnÞ

p� 	
� 2e � ðlnnþ 1Þ:

Since S is any instance of (6), we conclude that
Algorithm 2 has an approximation ratio of OðlnnÞ. tu

Fig. 3 depicts the approximation ratio of Algorithm 2 for
different numbers of active users. A cell typically has
several tens of active users. In Fig. 3, we can find that the
approximation ratio of Algorithm 2 increases slowly as the
number of active users n grows.

5.4 A Word on Complexity

Algorithm 2 is based on an intuitive idea that utilizes a
greedy method. We have shown that the gap between the
optimal value and the value returned by the algorithm
widens gradually as the number of active users n
increases. Here, we show that Algorithm 2 has a small
time complexity.

We denote byN the size of A�N andN ¼ n � ððm2 Þ þmÞ.
We use N j to represent the size of Sj, j � 1. Note thatPk

j � 1N j � N .

Algorithm 2 first finds pmax and partitions A�N into
S0; S1; . . . ; Sk, which requires a traversal of all elements of
A�N . This takes OðN Þ time.

For each Sj; j � 1, Algorithm 2 calls the subroutine
Algorithm 1. Algorithm 1 iteratively seeks an available ða; iÞ
with smallest tailðaÞ, which usually requires a sort for
ða; iÞ 2 Sj based on tailðaÞ. Thus, it can be shown that for Sj,
invoking Algorithm 1 takes OðN j lnN jÞ time. Moreover,

Xk
j¼1

OðN j lnN jÞ ¼
Xk
j¼1

OðN j lnNÞ ¼ OðN lnNÞ:

So, the total running time of Algorithm 2 can be
calculated as

TG-B ¼ OðN Þ þ
Xk
j¼1

OðN j lnN jÞ ¼ OðN lnNÞ

¼ O n �m2 lnðn �m2ÞÞ ¼ Oðn �m2ðlnnþ lnmÞ
� 

:

ð14Þ

6 A LOCAL RATIO TECHNIQUE-BASED ALGORITHM

The basic idea of Algorithm 2 is intuitive; however, the
performance is not so satisfying when the number of
active users grows (Fig. 3). In this section, we introduce a
more delicate approximation algorithm based on the local
ratio technique [15], which achieves a constant approx-
imation ratio of 2. The basic idea of local-ratio is similar
to the Dynamic Programming, which aims at solving
complex problems by breaking them down into simpler
subproblems.

6.1 The Algorithm

The approximation algorithm is listed as Algorithm 3. It
takes the number of RBs (m), the number of active users
(n), and the profit function (p : A�N ! IR�0) as the
input. It outputs a feasible schedule S	 and its total profit
W 	. Algorithm 3 first iterates from 1 through m to find
candidate ða; iÞs for S	. In each loop, the algorithm tries
to find the best candidate ða; iÞ (in the meaning of profit),
and uses a stack S to store it. After the iteration,
Algorithm 3 pops each ða; iÞ from S and adds ða; iÞ to
S	 if it is valid. Finally, the algorithm generates a feasible
schedule S	.

Algorithm 3. A Local Ratio Technique Based Algorithm

(L-R for short).

1: input m, n, p

2: p0  p, S  ; // S is a stack

3: for j ¼ 1 to m do

4: ða	; i	Þ  arg maxða;iÞ2fða;iÞjtailðaÞ¼jgðp0ða; iÞÞ
// break ties arbitrary

5: if p0ða	; i	Þ � 0 then

6: continue

7: end if

8: S:pushðða	; i	ÞÞ
9: for each ða; iÞ such that i ¼ i	 or a intersects a	 do

10: if p0ða; iÞ > 0 then

11: p0ða; iÞ  p0ða; iÞ � p0ða	; i	Þ
12: end if

13: end for

14: end for

15: S0  ;
16: while S 6¼ ; do

17: ða; iÞ  S:popðÞ
18: if S0 [ fða; iÞg is a valid schedule then

19: // a valid schedule means that S0 [ fða; iÞg
should meet the constraints of (6)

20: S0  S0 [ fða; iÞg
21: end if

22: end while

23: S	  S0, W 	  
P
ða;iÞ2S	 pða; iÞ

24: return S	 and W 	
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6.2 The Approximation Ratio

In this section, we will prove that Algorithm 3 has an
approximation ratio of 2, and that this approximation ratio
is tight. To obtain this result, we first introduce Lemma 5,
which is an instance of the Local Ratio Theorem [15]. Then,
we prove that Algorithm 3 is a 2-approximation algorithm
for LTE UL FDPS. Finally, we use an example to show that
the approximation ratio of 2 is tight.

Lemma 5. Consider an uplink system which has m RBs and
n active users. Let p, p1, p2 be profit functions such that
pða; iÞ ¼ p1ða; iÞ þ p2ða; iÞ; 8ða; iÞ 2 A�N . Let S	, S	1 , and
S	2 be optimal schedules for p, p2, and p3, respectively. Assume
that S is a feasible schedule such that r �

P
ða;iÞ2S p1ða; iÞ �P

ða;iÞ2S	
1
p1ða; iÞ and

r �
X
ða;iÞ2S

p2ða; iÞ �
X
ða;iÞ2S	

2

p2ða; iÞ;

is a constant. Then, we have

r �
X
ða;iÞ2S

pða; iÞ �
X
ða;iÞ2S	

pða; iÞ:

Proof. Note thatX
ða;iÞ2S	

pða; iÞ ¼
X
ða;iÞ2S	

p1ða; iÞ þ
X
ða;iÞ2S	

p2ða; iÞ

�
X
ða;iÞ2S	

1

p1ða; iÞ þ
X
ða;iÞ2S	

2

p2ða; iÞ:

On the other hand,X
ða;iÞ2S	

1

p1ða; iÞ þ
X
ða;iÞ2S	

2

p2ða; iÞ � r �
X
ða;iÞ2S

p1ða; iÞ

þ r �
X
ða;iÞ2S

p2ða; iÞ ¼ r �
X
ða;iÞ2S

pða; iÞ:

Thus, the lemma is proved. tu
Note that in Lemma 5, the profit functions p, p1, and p2

need not be nonnegative functions. That is to say, the profit
function can take a negative value for some ða; iÞ 2 A�N .
In Theorem 6, we will prove that Algorithm 3 has a constant
approximation ratio of 2. The proof of this result relies on
the observation that Lemma 5 applies to Algorithm 3 and
we will use Lemma 5 inductively in the proof.

Theorem 6. Algorithm 3 is a 2-approximation algorithm for LTE
UL FDPS.

Proof. We first introduce some necessary notations and
definitions.

After the outermost for-loop is finished, the stack S
can be represented as [mj¼1Sj, where each jSjj � 1. If in
the jth for-loop, the algorithm adds some ða	j ; i	j Þ to S,
then Sj ¼ fða	j ; i	j Þg. Otherwise, Sj ¼ ;.

Correspondingly, the outermost for-loop iteratively

generates a series of profit functions ðpðjÞ1 ; p
ðjÞ
2 Þ; j ¼ 1; . . . ;

m. For j � 1, if Sj ¼ fða	j ; i	j Þg,

p
ðjÞ
1 ða; iÞ ¼

p
ðj�1Þ
2 ða	j ; i	j Þ � 1IR>0

�
p
ðj�1Þ
2 ða; iÞ


i ¼ i	j or a
intersects a	j ;

0 otherwise;

8<
:

and

p
ðjÞ
2 ða; iÞ ¼ p

ðj�1Þ
2 ða; iÞ � pðjÞ1 ða; iÞ 8ða; iÞ 2 A�N:

1IR>0ðxÞ is the characteristic function such that 1IR>0ðxÞ ¼
1 for x > 0, and 1IR>0ðxÞ ¼ 0 for x � 0.

If Sj ¼ ;, we set p
ðjÞ
1 ða; iÞ ¼ 0 and p

ðjÞ
2 ða; iÞ ¼ p

ðj�1Þ
2 ða; iÞ.

We let p
ð0Þ
2 ða; iÞ ¼ pða; iÞ and

p
ð0Þ
1 ða; iÞ ¼ 0; 8ða; iÞ 2A�N:

Thus, we have p
ðjÞ
1 ða; iÞ þ p

ðjÞ
2 ða; iÞ ¼ p

ðj�1Þ
2 ða; iÞ; j � 1;

ða; iÞ 2 A�N . According to the algorithm, it can be
shown that for j � 1,

p
ðjÞ
2 ða; iÞ � 0; 8tailðaÞ � j;

and that

8ða; iÞ 2 A�N; pðjÞ2 ða; iÞ � p
ðkÞ
2 ða; iÞ; j � k:

In addition, the while-loop equivalently generates a
series of S	j ; j ¼ 0; . . . ;m, where S	0 ¼ S	, S	m ¼ ;, and
S	j � [

jþ1
k¼mSk. S

	
j is regarded as the value of variable S0

after the algorithm tries to add [jþ1
k¼mSk to S0. So, it is

obvious that

S	jþ1 � S	j � S	jþ1 [ Sjþ1; j ¼ 0; . . . ;m� 1:

We denote by W
ðjÞ
opt the total profit of the optimal

schedule for p
ðjÞ
2 . If the optimal schedule is empty, we set

W
ðjÞ
opt ¼ 0. In particular, W

ð0Þ
opt is the optimal value of

(6). We define W ðjÞ ¼
P
ða;iÞ2S	j

p
ðjÞ
2 ða; iÞ. If S	j ¼ ;,

W ðjÞ ¼ 0. In particular, W ð0Þ ¼W 	. So, what we are going

to prove is W
ð0Þ
opt � 2W ð0Þ ¼ 2W 	.

In the following, we will prove by induction that
W
ðjÞ
opt � 2W ðjÞ, j ¼ m;m� 1; . . . ; 1; 0. When j ¼ 0, we

obtain the desired result. The mathematical induction
starts from m down to 0.

The Basis. When j ¼ m, pðmÞða; iÞ � 0, tailðaÞ � m. That

is, pðmÞða; iÞ � 0, 8ða; iÞ 2 A�N . So, W
ðmÞ
opt ¼ 0. Since

S	m ¼ ;, W
ðmÞ
opt � 2W ðmÞ holds vacuously.

The Inductive Step. Assume that W
ðjÞ
opt � 2W ðjÞ, j � m.

we denote by V
ðjÞ
opt the total profit of the optimal schedule

for p
ðjÞ
1 .

If Sj ¼ ;, then p
ðjÞ
2 ða; iÞ ¼ p

ðj�1Þ
2 ða; iÞ, and p

ðjÞ
1 ða; iÞ ¼ 0.

So, W
ðj�1Þ
opt ¼W ðjÞ

opt. Since S	j � S	j�1 � S	j [ Sj, S	j�1 ¼ S	j .

Thus,

W ðj�1Þ ¼
X

ða;iÞ2S	
j�1

p
ðj�1Þ
2 ða; iÞ ¼

X
ða;iÞ2S	j

p
ðjÞ
2 ða; iÞ ¼W ðjÞ:

Then, we get

W
ðj�1Þ
opt ¼W ðjÞ

opt � 2W ðjÞ ¼ 2W ðj�1Þ:

Otherwise, Sj ¼ fða	j ; i	j Þg. According to the algorithm,
p
ðjÞ
2 ða	j ; i	j Þ ¼ 0. Because S	j � S	j�1 � S	j [ Sj,

2
X

ða;iÞ2S	
j�1

p
ðjÞ
2 ða; iÞ ¼ 2

X
ða;iÞ2S	j

p
ðjÞ
2 ða; iÞ

¼ 2W ðjÞ �W ðjÞ
opt:

ð15Þ
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On the other hand, S	j�1 contains at least one element
ða0; i0Þ such that i0 ¼ i	j or a0 intersects a. According to the
algorithm, fða0; i0Þg ¼ Sk; k � j. Thus,

p
ðj�1Þ
2 ða0; i0Þ � pðk�1Þ

2 ða0; i0Þ > 0:

So, p
ðjÞ
1 ða0; i0Þ ¼ p

ðj�1Þ
2 ða	j ; i	j Þ. In this case,X

ða;iÞ2S	
j�1

p
ðjÞ
1 ða; iÞ � p

ðjÞ
1 ða0; i0Þ ¼ p

ðj�1Þ
2 ða	j ; i	j Þ:

Then, we derive an upper bound for V
ðjÞ
opt . We define

Suppp1
¼ fða; iÞ j pðjÞ1 ða; iÞ > 0g. Suppp1

contains ða; iÞs
such that i ¼ i	j or a intersects a	j . Moreover, p

ðj�1Þ
2 ða; iÞ �

0; tailðaÞ � j� 1, so for ða; iÞ 2 Suppp1
, tailðaÞ � j. Since

tailða	j Þ ¼ j, ða; iÞ 2 Suppp1
such that i 6¼ i	j must intersects

a	j at RB j. So, the optimal solution for p
ðjÞ
1 at most have two

ða; iÞs 2 Suppp1
: for one ða; iÞ, i ¼ i	j , and for another ða; iÞ,

a intersects a	j . That is, V
ðjÞ
opt � 2p

ðj�1Þ
2 ða	j ; i	j Þ. Thus,

2
X

ða;iÞ2S	
j�1

p
ðjÞ
1 ða; iÞ � 2p

ðj�1Þ
2 ða	j ; i	j Þ � V

ðjÞ
opt : ð16Þ

Since p
ðj�1Þ
2 ða; iÞ ¼ pðjÞ1 ða; iÞ þ p

ðjÞ
2 ða; iÞ, according to

(15) and (16), Lemma 5 indicates that

2W ðj�1Þ ¼ 2
X

ða;iÞ2S	
j�1

p
ðj�1Þ
2 ða; iÞ �W ðj�1Þ

opt :

Since both the basis and the inductive step have been
proved, it has now been proved by mathematical
induction that W

ð0Þ
opt � 2W 	. So, Algorithm 3 has an

approximation ratio of 2. tu

Moreover, we find an LTE UL FDPS problem that shows

that the approximation ratio of Algorithm 3 is tight.

Proposition 1. The approximation ratio of 2 is tight.

Proof. In the LTE UL FDPS problem of Table 1, m ¼ n ¼ 2,

and 0 < � < 1. The optimal solution is fðf2g; 1Þ; ðf1g; 2Þg,
and the optimal value is 2� �. However, for this instance

of LTE UL FDPS, Algorithm 3 returns S	 ¼ fðf1g; 1Þg
and W 	 ¼ 1. So, the approximation ratio � 2��

1 ; 80 <
� < 1. When �! 0, 2� �! 2. Thus, the approximation

ratio is tight. tu

6.3 A Word on Complexity

We have shown that Algorithm 3 has a constant approx-

imation ratio, and here we analyze the complexity of the

algorithm. In the jth for loop, the number of ða; iÞs such that

tailðaÞ ¼ j is m � j. So, to obtain ða	j ; i	j Þ, the algorithm at least
accesses m � j ða; iÞs. In addition, since in the jth for loop,
p0ða; iÞ � 0, tailðaÞ � j � 1, the number of ða; iÞs such
that p0ða; iÞ is changed is at least ðm2 Þ þm�

jðj�1Þ
2 þ ðn � 1Þ �

j � ðm� jþ 1Þ. So, the outermost for loop takes

Xm
j¼1

m � jþ m

2

� 	
þmþ ðn� 1Þ � j � ðm� jþ 1Þ � jðj� 1Þ

2

� �

¼ 1

6
�mþm3 þ 5mnþ 6m2nþm3n
� 

¼ Oðm3nÞ

running time. Since S contains at most m elements, the
while loop takes OðmÞ time. Thus, the running time of
Algorithm 3 is

TL-R ¼ Oðm3nÞ: ð17Þ

7 STABILITY ANALYSIS

The assumption of an infinitely backlogged model in
scheduling analysis is conventional in many literatures.
Nevertheless, in real networks, packets are generated for
each user in accordance with a stochastic arrival process
with respect to applications, which may result in the
instability of queues. Therefore, it is preferable to take
system utility maximization and queuing stability into
account simultaneously when we design scheduling algo-
rithms. Since the L-R Algorithm already achieves a fairly
good performance, we now investigate its stability. In this
section, we formalize a specific LTE UL FDPS problem,
which is a special case of the general problem (6), and the
L-R Algorithm can also be applied with the same
approximation ratio of 2. Similar to the methodology used
in [14], we utilize the Lyapunov Drift to prove the queuing
stability of the L-R Algorithm in LTE UL system.

7.1 A Specific Problem

We consider a specific problem that incorporates the queue
length and channel quality information in the LTE UL. In
this case, we allocate each set of contiguous RBs a 2 A to
user i to maximize

P
i2N
P

a2A
P

a:c2a QiX
a
i R

c
i in each TTI.

The new optimization problem is formalized as follows:

max
X
i2N

X
a2A

X
a:c2a

QiX
a
i R

c
i ;

subject to :

for each RB c 2M:
X

i2N;a:c2a
Xa
i � 1;

for each user i 2 N :
X
a2A

Xa
i � 1;

8i 2 N; 8a 2 A: Xa
i 2 f0; 1g:

ð18Þ

To solve the problem (18), we actually intend to find the
most advantageous way to assign an a 2 A to user i so as to
maximize the throughput and keep the queue lengths
bounded. The specific problem can be also considered as a
multicarrier variant of the well-known MaxWeight Match
problem. The first constraint of (18) shows that every RB is
assigned to at most one user. The second constraint ensures
that each user can get no more than one set of contiguous
RBs. Especially, for any user i,

P
a2A X

a
i ¼ 0 means the user
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will have no chance to send data in this TTI. Now, we prove
the L-R Algorithm solves (18) with the same approximation
ratio of 2 as it does in (6).

Lemma 6. The L-R Algorithm also solves the specific LTE UL
FDPS problem (18) in a polynomial runtime with a constant
approximation ratio of 2.

Proof. We can utilize the profit function to express the
objective of (18) like (3):

pða; iÞ ¼ Qi

X
a:c2a

Rc
i :

Here, the profit pða; iÞ is obtained as long as the
contiguous set of RBs a is assigned to user i. In other
words, the profit value exactly equals to the product of
queue length Qi and the total data rate

P
a:c2a R

c
i .

Evidently, the LTE UL FDPS problem (18) is a special
case of (6). The L-R Algorithm can also be applied here to
solve it with the same approximation performance, and
thus we prove the lemma. tu

7.2 Necessary Definitions

Before we conduct the stability analysis, the necessary
definitions are presented. The definition of ð!; �Þ-admissible
for single-carrier system is introduced in [27]. We extend
that definition to the LTE UL multicarrier scenario.

Definition 2. We say that a system is ð!; �Þ-admissible if the
adversary has a valid schedule set of Y a

i ðtÞ 2 f0; 1g such that
in any window ½t0; t0 þ !� 1�, for the arrival process Aiðt0Þ
and channel rate Rc

iðtÞ we have

Xt0þ!�1

t0¼t0
Aiðt0Þ � ð1� �Þ

Xt0þ!�1

t¼t0

X
a2A

X
a:c2a

Y a
i ðtÞRc

iðtÞ 8i; ð19Þ

where ! 2 Zþ, � < 1, and
P

i;a:c2a Y
a
i ðtÞ ¼ 1; 8t; i; c.

Informally, an algorithm is said to be stable if it keeps the
queue sizes bounded whenever this is achievable [14]. More
formally, we define the queuing stability of scheduling
algorithm for LTE uplink as follows:

Definition 3. An scheduling algorithm for LTE uplink is stable if
it keeps the queue lengths bounded for any ð!; �Þ-admissible
systems.

Suppose that a feasible scheduler Y ensures the arrival
process A and channel rate R satisfy the relation of (19),
the queue will not increase steeply and its length can be
bounded. Accordingly, the ð!; �Þ-admissible explicitly
describes the basic propositions of some LTE UL systems,
which will be stably scheduled by the feasible FDPS
algorithms.

The procedure of stability proof follows a standard
technique utilized in [14]. In this paper, the procedure is
called Lyapunov drift analysis, which is similarly conducted
in [28] and [25] as well. The fundamental analysis consists
in showing the Lyapunov function has a negative drift
when the queue lengths are sufficiently large. Here,
the Lyapunov drift is computed by Lðtþ !Þ � LðtÞ, where
LðtÞ ¼

P
iðQiðtÞÞ2 is the Lyapunov function. For reference

simplified, we use some notations to represent different

algorithms in the following contents. Namely, X, X	, and

Y denote the L-R Algorithm, the Optimal Algorithm and any

other Algorithm for Problem (18), respectively. More

specifically, X, X	, and Y comprise the Boolean variables

Xa
i , X	ai and Y a

i , respectively.
To investigate the stable conditions for the L-R Algorithm

X, it is acceptable to assume that the Optimal Algorithm X	

is stable for any ð!; �Þ-admissible LTE UL system, where

! 2 Zþ, � < 1. Afterwards, we figure out the propositions of

ð!0; �0Þ-admissible LTE UL systems, which will be stably

scheduled by the L-R Algorithm X. Moreover, the para-

meters ð!0; �0Þ are calculated and expressed by ð!; �Þ, which

are supposed as known parameters.

7.3 Stability Analysis

Now, we perform the Lyapunov drift analysis for the L-R

Algorithm, which approximately solves the LTE UL FDPS

problem (6) and (18). Some necessary and reasonable

assumptions for LTE UL system used in the stability

analysis are listed below:

1. The channel rates are bounded in a finite set, i.e.,
Rsup is the supremum of these rates while Rinf is
the infimum.

2. The arrival process is also bounded, i.e., Asup is the
supremum while Ainf is the infimum.

3. The queue sizes among all the n users within some
time interval ðt0; t0 þ !� 1Þ is bounded, i.e., Qsup is
the supremum while Qinf is the infimum.

The stability conclusions with the values of ð!0; �0Þ are

demonstrated in Theorem 7.

Theorem 7. The L-R Algorithm X is stable for any ð!0; �0Þ-
admissible LTE UL systems as long as 8i; c, the user rates

Rc
iðtÞ cannot be zero for arbitrarily long periods, where

1

2
� �0 � 1þ ðn� 1ÞAinf

B4
� 2ð1� �ÞB3Q

sup

B4Qinf
; ð20Þ

and

!0 � !: ð21Þ

Proof. It takes two steps to prove Theorem 7. We start with

showing that in any ð!0; �0Þ-admissible LTE UL systems,

once the queue lengths are sufficiently large then the

Lyapunov function has a negative drift. Afterwards, we

suppose that the parameters ð!; �Þ are already known for

the stable X	, and hence ð!0; �0Þ of X can be calculated

and expressed by them.
First of all, the fundamental relation among queue

lengths in different TTI yields (22), where ½x�þ denotes
maxð0; xÞ,

Qiðt0 þ !0Þ ¼ Qiðt0Þ þ
Xt0þ!0�1

t¼t0
AiðtÞ

"

�
Xt0þ!0�1

t¼t0

X
a2A

X
a:c2a

Xa
i ðtÞRc

iðtÞ
#þ

8i 2 N;
ð22Þ

which can be rewritten as
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Qiðt0 þ !0Þ � Qiðt0Þ þ
Xt0þ!0�1

t¼t0
AiðtÞ

�
Xt0þ!0�1

t¼t0

X
a2A

X
a:c2a

Xa
i ðtÞRc

iðtÞ 8i 2 N:
ð23Þ

To simplify the expressions, the abbreviations of

notations
P

i ,
P

a;c , and
P

t stand for
P

i2N ,
P

a2A
P

a:c2a ,

and
Pt0þ!0�1

t¼t0 , respectively. Then, (23) is substituted into

the Lyapunov drift and we have

Lðt0 þ !0Þ � Lðt0Þ
¼
X
i

Qiðt0 þ !0Þ2 �
X
i

Qiðt0Þ2

¼ 2
X
i

�X
t

AiðtÞ
�2

þ 2
X
i

�X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�2

þ 2
X
i

Qiðt0Þ
�X

t

AiðtÞ �
X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�

�
X
i

�X
t

AiðtÞ
�2

�
X
i

�X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�2

� 2
X
i

X
t

AiðtÞ
�X

t

X
a;c

Xa
i ðtÞRc

iðtÞ
�
;

where the last three terms form a perfect square, and

hence we obtain

Lðt0 þ !0Þ � Lðt0Þ

� 2
X
i

�X
t

AiðtÞ
�2

þ 2
X
i

�X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�2

þ 2
X
i

Qiðt0Þ
�X

t

AiðtÞ �
X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�
:

ð24Þ

Since the system is ð!0; �0Þ-admissible, the total
amount of arriving data for each user is upper bounded
(see (19)) by a function ofRsup,m, !0, and �0. In particular,

Xt0þ!0�1

t¼t0
AiðtÞ � ð1� �0Þ

Xt0þ!0�1

t¼t0

X
a;c

Xa
i ðtÞRc

iðtÞ

� ð1� �0Þ!0mR
sup:

Consequently, the first term of the right side of (24)
has an upper bound while the second term is also
bounded by a function of Rsup, m, !0, n, and �0. We
denote B1 as the upper bound of the first two terms, i.e.,

B1 ¼ 2nðð1� �0Þ2 þ 1Þð!0mR
supÞ2:

As for the third term, provided that t0 � t � t0 þ !0,
the following inequality holds obviously:

Qiðt0Þ � QiðtÞ þ !0mR
sup:

Hence, we have

Lðt0 þ !0Þ � Lðt0Þ

� B1 þ 2!0mR
sup
X
i

X
t

�
AiðtÞ �

X
a;c

Xa
i ðtÞRc

iðtÞ
�

þ 2
X
i

QiðtÞ
�X

t

AiðtÞ �
X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�
:

ð25Þ

Similarly, the second term of the above expression can
be upper bounded by a function of Rsup, m, n, and !0,
which equals to B2:

B2 ¼ �2n�0ð!0mR
supÞ2:

Besides, the objective values of (18) under different
algorithms form the succeeding inequality:

2
X
t;i;a;c

QiðtÞXa
i ðtÞRc

iðtÞ �
X
t;i;a;c

QiðtÞX	ai ðtÞRc
iðtÞ

�
X
t;i;a;c

QiðtÞY a
i ðtÞRc

iðtÞ:
ð26Þ

Again, both ð!0; �0Þ-admissible proposition and (26)
are applied together. In consequence, (25) can be
rewritten as

Lðt0 þ !0Þ � Lðt0Þ

� B1 þB2 þ 2
X
i

QiðtÞ
�X

t

AiðtÞ �
X
t

X
a;c

Xa
i ðtÞRc

iðtÞ
�

� B1 þB2 þ 2
X
i

X
t

X
a;c

QiðtÞRc
iðtÞ�

ð1� �0ÞY a
i ðtÞ �Xa

i ðtÞ


� B1 þB2 þ 2
X
i;t;a;c

ð1� 2�0ÞQiðtÞXa
i ðtÞRc

iðtÞ:

ð27Þ

Evidently, the parameter �0 needs to satisfy (20) (i.e.,
1
2 � �0) to keep the third term of (27) nonpositive.
Suppose j ¼ argminiQiðtÞ and QminðtÞ ¼ QjðtÞ, then
(28) is hence derived:

Lðt0 þ !0Þ � Lðt0Þ
� B1 þB2 þ 2ð1� 2�0Þ

X
i;t;a;c

QiðtÞXa
i ðtÞRc

iðtÞ

� B1 þB2 þ 2ð1� 2�0ÞRinfm
X
t

QminðtÞ:
ð28Þ

Once the queue lengths are sufficiently large, the
potential function Lðt0Þ decreases, which implies the
stability of the L-R Algorithm X. So far the stability is
proved, we turn to compute the key parameters ð!0; �0Þ,
and use ð!; �Þ of X	 to express them.

Obviously, when � < 1, inequality (26) yields

2ð1� �Þ
X
t;i;a;c

QiðtÞXa
i ðtÞRc

iðtÞ

� ð1� �Þ
X
t;i;a;c

QiðtÞX	ai ðtÞRc
iðtÞ:

ð29Þ

Combining the ð!; �Þ-admissible proposition for the
stable X	, the bounded queue lengths and (29), we have

2ð1� �ÞQsup
X
t;i;a;c

Xa
i ðtÞRc

iðtÞ

� 2ð1� �Þ
X
t;i;a;c

QiðtÞXa
i ðtÞRc

iðtÞ

� ð1� �Þ
X
t;i;a;c

QiðtÞX	ai ðtÞRc
iðtÞ

� Qinf
X
t;i;a;c

AiðtÞ:
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Likewise,
P

t;i;a;c X
a
i ðtÞRc

iðtÞ can be upper bounded by
a function (denoted by B3) of m, n, !, and Rsup. 8i 2 N ,
the total arriving data of user i has a lower bound, and
thus we obtain

2ð1� �ÞQsupB3 � Qinf
X
t;i;a;c

AiðtÞ

� Qinf
Xt¼t0þ!�1

t¼t0
AiðtÞ þQinfðn� 1ÞAinf :

ð30Þ

As long as we set !0 � ! (see (21)), (30) can be
rewritten as follows:

Xt¼t0þ!0�1

t¼t0
AiðtÞ �

Xt¼t0þ!�1

t¼t0
AiðtÞ

� 2ð1� �ÞB3
Qsup

Qinf
� ðn� 1ÞAinf :

So far, we find out an upper bound for
Pt¼t0þ!0�1

t¼t0 AiðtÞ.
To guarantee the LTE UL system is ð!0; �0Þ-admissible
so that X schedules stably, we require (19) holds for
ð!0; �0Þ, i.e.,

Xt0þ!0�1

t¼t0
AiðtÞ � ð1� �0Þ

Xt0þ!0�1

t¼t0

X
a2A

X
a:c2a

Xa
i ðtÞRc

iðtÞ 8i: ð31Þ

Moreover, the right part of (31) can be intuitively lower
bounded by ð1� �0Þ!0mR

inf . We use B4 to represent
!0mR

inf . Consequently, (31) holds provided that

2ð1� �ÞB3
Qsup

Qinf
� ðn� 1ÞAinf � ð1� �0Þ!0mR

inf ;

where �0 can be eventually derived as

�0 � 1þ ðn� 1ÞAinf

B4
� 2ð1� �ÞB3Q

sup

B4Qinf
:

In other words, the LTE UL system can be considered
as ð!0; �0Þ-admissible in case ð!0; �0Þ satisfy (20) and (21),
respectively. In this kind of cellular systems, the L-R
Algorithm schedules stably. Hence, we prove the theorem
and complete the stability analysis. tu

8 PERFORMANCE EVALUATION

In this section, we utilize the LTE UL simulator [29], which

is an open platform for academic research. On that platform,

we deploy the Algorithm 3 and perform simulations for the

Local Ratio (L-R) scheduler (Algorithm 3) as well as other
well-known schedulers, including Max-Min fairness, Best
CQI, Proportional-Fair and Round Robin (RR). To imple-
ment the Algorithm 3, the profit function is specified as the
current data rate, namely,

pða; iÞ ¼
X
c2a

Rc
i ;

where Rc
i is the average data rate of user i on RB c within

the present TTI.
We carry out five similar simulations and calculate the

average cell throughput4 for each scheduler. The results are
provided with the average values of a 10,000 TTIs duration
for each number of UEs. The operational frequency is
2 GHz while the frequency bandwidth is 20 MHz. Two
kinds of user speed are set, i.e., the walking mode (5 km/h)
and the vehicular mode (50 km/h). As illustrated in Figs. 4
and 5, the RR and Best CQI (that always schedules user
with the best channel quality) algorithms are the lower and
upper bounds of all schedulers in terms of system
performance (represented by cell throughput in this case),
respectively. Along with the increasing number of users,
the average throughput of all schedulers trends to decrease
slightly. The throughput of the L-R scheduler is between
the PF and the upper bound (Fig. 4), which indicates its
good performance. When the user speed is accelerated to
50 km/h, due to serious channel fading, the average cell
throughput of all schedulers are degraded (Fig. 5). How-
ever, in this mode, the L-R scheduler still achieves better
performance than the PF scheduler.

To investigate the stability of the L-R scheduler, we
compute a stability region based on Theorem 7. It is
assumed that the Optimal Algorithm for problem (6) is
stable for any (1-0)-admissible LTE system, namely ! ¼ 1,
� ¼ 1

2 . In this case, to hold (20) and (21), we consider
1
2 � 1þ ðn�1ÞAinf

B4
� B3Q

sup

B4Qinf and !0 ¼ 1. In other words, the
2-approximation L-R Algorithm is stable as long as Qsup

is set,

Qsup � B4

2B3
þ ðn� 1ÞAinf

B3
: ð32Þ

Furthermore, we present simulation results of the
average queue length of the L-R scheduler when different
arrival rates are set. The queue length are sampled and
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Fig. 4. The average throughput of all the UEs. (User speed is 5 km/h.) Fig. 5. The average throughput of all the UEs. (User speed is 50 km/h.)

4. The cell throughput is the total throughput of all the uploading UEs
that a eNodeB covers.



averaged in a period of 100 TTIs, i.e., 0.1 s. The arrival
rates A are also set 50/60/70/80 Mbps. Each rate lasts for
10,000 TTIs. According to (32), we can plot a stability region
for the L-R scheduler. Theoretically, the queue length will
reside in this region without overflow when a certain
arrival rate is set for the L-R scheduler. The stability region
(the dash line) and the simulation results (the solid line) are
combined in Fig. 6. It indicates that the queues are stable
when the arrival rates are relatively small. However, when
the arrival rate is 80 Mbps, the average queue length is
increasing steeply and exceeds the stability region, which
implies overflow and the instability of the scheduling
algorithm. In other words, the L-R Algorithm is stable for
LTE UL system within a certain admissible region of the
arrival rate.

9 CONCLUSION

In this paper, we consider a general FDPS problem for the

LTE uplink. Our formulation of this problem applies to

many scheduling policies. We prove that the LTE UL FDPS

problem is MAX SNP-hard, which implies that the problem

is hard to approximate. We propose two approximation

algorithms for this scheduling problem, both of which are

computable in polynomial time. The first algorithm is based

on a simple greedy method, and it has an approximation

ratio of OðlnnÞ, where n is the number of active users in the

cell. The second L-R Algorithm is more delicate, which

though achieves a constant approximation ratio of 2.
Furthermore, we perform Lyapunov drift analysis to

investigate the stability of the L-R Algorithm. We first
specify the general profit function to incorporate queue
length and channel quality information. The specific
problem (18) is a special case of (6). Accordingly, the L-R
Algorithm can be also applied with the same approxima-
tion ratio of 2. Subsequently, we show the Lyapunov drift
for problem (18) is negative once the queue lengths are
sufficiently large. Finally, the L-R Algorithm is proved to be
stable for any ð!0; �0Þ-admissible LTE UL system. The
simulation results indicate good performance of the Local
Ratio scheduler.
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