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Abstract—Currently, Ethernet is being enhanced to become the
unified switch fabric in data centers.With the unified switch fabric,
the cost on redundant devices is reduced, while the design andman-
agement of data center networks are simplified. Congestion man-
agement is one of the indispensable enhancements onEthernet, and
Quantized Congestion Notification (QCN) has just been ratified as
the formal standard. Though QCN has been investigated for sev-
eral years, there exist few in-depth theoretical analyses on QCN.
The most possible reason is that QCN is heuristically designed and
involves the property of variable structure. The classic linear anal-
ysis method is incapable of handling the segmented nonlinearity of
the variable structure system. In this paper, we use the phase plane
method, which is suitable for systems of segmented nonlinearity,
to analyze the QCN system. The overall dynamic behaviors of the
QCN system are presented, and the sufficient conditions for the
stable QCN system are deduced. These sufficient conditions serve
as guidelines toward proper parameters setting. Moreover, we find
that the stability of QCN is mainly promised by the sliding mode
motion, which is the underlying reason for QCN's stable queue
shown in numerous simulations and experiments. Experiments on
theNetFPGAplatform verify that the analytical results can explain
the complex behaviors of QCN.

Index Terms—Phase plane analysis, quantized congestion notifi-
cation, sliding mode motion, stability.

I. INTRODUCTION

T HROUGH network, data centers integrate tens of thou-
sands of computers into a powerful computing infrastruc-

ture, benefiting from the economies of scale. In today's data
centers, it is common to deploy an Ethernet network for IP
traffic, one or two storage area networks (SANs) for block-mode
Fibre Channel traffic, and an InfiniBand network for High Per-
formance Computing (HPC) traffic. Each of them has its own
characters. Ethernet is feature-rich, simple, cheap, and broadly
used, SANs require no packets loss, while InfiniBand desires
extremely low latency. This hybrid network not only dramat-
ically increases the cost on cables, switches, and transceivers,
but also complicates the design, operation, and management of
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data center networks (DCNs). As the size of data centers grows,
problems are getting worse. The unified switch fabric is being
developed to solve these problems [1], [6], [24].
With the recent advances in the speed of 10 Gb/s and the rat-

ification of the standard for 40 Gb/s and 100 Gb/s [7], Ethernet
is chosen to be enhanced as the unified switch fabric in data
centers by the IEEE 802.1 Data Center Bridging (DCB) work
group [1]. The enhanced Ethernet is called Data Center Eth-
ernet (DCE) or Converged Enhanced Ethernet (CEE). Mean-
while, Fiber Channel over Ethernet (FCoE) is developed to ac-
commodate storage traffic on lossless Ethernet [20], and tech-
niques such as MXoE [22] and RoCEE [19] are investigated
to carry HPC traffic over Ethernet of low latency. On the other
hand, DCE begins to appear in industry platforms, such as the
Unified Computing System of Cisco [5].
As a best-effort network technique, Ethernet needs further en-

hancements to satisfy additional requirements of DCNs, such as
extremely low latency and no packets loss. Accordingly, several
enhancement mechanisms of Ethernet are standardized within
the IEEE 802.1 DCB work group. Priority-based flow control
mechanism is one of these enhancement mechanisms devel-
oped by the IEEE 802.1Qbb work group [3]. In the Priority-
based flow control mechanism, traffic requiring low latency is
assigned high priority, and the Pause mechanism [15] developed
by IEEE 802.3x is applied to traffic within the same priority
to guaranty no packets loss. However, the Priority-based Pause
mechanism can only solve the transient congestion problem and
may cause the saturation tree problem [28] and correspondingly
performance degradation facing long-lived congestion. Thus,
the end-to-end congestion management mechanism is devel-
oped by the IEEE 802.1Qau work group [2] to eliminate the
long-lived congestion. It is another indispensable enhancement
of Ethernet included in IEEE 802.1 DCB. Moreover, compared
to deploying one for each type of traffic in the transport layer, it
is more economic to deploy a uniform congestion management
scheme in link layer.
The design of end-to-end congestion management mecha-

nisms is challenging due to the special environments and partic-
ular requirements in DCE. In general, congestion can be inferred
implicitly by packet loss, or detected explicitly by some observ-
able variables, such as round-trip time (RTT) and queue length.
However, in DCE, packets cannot be dropped, and it is impos-
sible to estimate RTT due to no ACK. Hence, the queue length is
naturally employed to detect congestion in DCE. As a step fur-
ther, the queue length should be constrained tightly within the
buffer size to guarantee low queuing delay and in case the Pri-
ority-based Pause mechanism is triggered frequently. However,
the buffer of switch is shallow, and thus it is easy to become
empty or overflow. The shallow buffer challenges the design of

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 1, FEBRUARY 2015

end-to-end congestion management scheme in DCE. In addi-
tion, the congestion management scheme should be rate-based
instead of window-based since the window size will be limited
to only several packets in DCE due to the small RTT. The last
but not the least important is that the congestion management
scheme should be implemented on hardware to handle traffic in
the speed of gigabits per second. Therefore, the congestion con-
trol algorithm in DCE must be simple enough.
The IEEE 802.1Qau work group has been working on the

end-to-end congestion management scheme of DCE for several
years. Up to now, four proposals have been released [2], and
Quantized Congestion Notification (QCN) is ratified as the final
standard in 2010 [1]. Moreover, QCN has been implemented
in devices such as Cisco Nexus 7000 Series [17] and Focal-
Point FM6000 [8]. Although QCN has been investigated suf-
ficiently on simulations, implementations, and so on, the theo-
retical study on QCN is insufficient. The most important reason
is that QCN is heuristically designed and involves the property
of variable structure. The classic linear analysis method is in-
capable of handling the segmented nonlinearity of the variable
structure system, as we will show in Section II. The developers
of QCN show that QCN is stable when the delay is bounded
using the frequency-domain analysis [10]. Although they can
provide some insight on QCN, the frequency-domain analysis
is a classic linear analysis method, and thus they cannot cap-
ture the characteristic of the switching process between the rate
increase subsystem and rate decrease subsystem in QCN. How-
ever, this switching process will imposes significant impacts on
the stability, performance, and parameters setting of QCN, as we
will show in this paper. Moreover, the frequency-domain anal-
ysis method used in [10] cannot explore the dynamic behaviors
of QCN.
In this paper, we use the phase plane method, which is suit-

able for systems of segmented nonlinearity, to analyze the QCN
system. We first build a fluid-flow model for the QCN system,
and then sketch phase trajectories of the rate increase subsystem
and the rate decrease subsystem minutely. Subsequently, taking
the switching process between these two subsystems into con-
sideration, we combine these phase trajectories to explore the
motion patterns of the phase trajectories describing the global
QCN system case by case. As a result, we can provide panorama
of the behaviors of the global QCN system. Our analytical re-
sults show that the stability of QCN is mainly promised by the
sliding mode motion [21]. This is why the queue length always
stays close to the target point in the QCN system, as shown
in numerous simulations and experiments [14], [30]. However,
the range of sliding mode motion region and whether QCN can
enter into the sliding mode motion depend on not only the pa-
rameters settings but also the network configurations.Moreover,
the sufficient conditions for the stability of the QCN system are
deduced. They can serve as guidelines toward proper parame-
ters setting. Finally, we implement QCN on the NetFPGA plat-
form [4] and verify the theoretical results through experiments.
The remainder of this paper is arranged as follows. In

Section II, the phase plane analysis method is introduced in
brief. Subsequently, the core mechanism of QCN is summa-
rized, and the fluid-flow model is constructed. In Section IV,
the motion patterns of the phase trajectories describing the
QCN system are explored using the phase plane method. Next,

Fig. 1. Example of phase trajectory: (a) phase trajectory and (b) corresponding
common trajectory in time domain.

Fig. 2. Example of phase plane analysis on congestion loop. (a) Constraints of
buffer size. (b) Sliding mode motion.

the sufficient conditions for the stability of QCN are deduced
in Section V. Section VI shows the experimental validation
on the NetFPGA platform. Finally, conclusions are drawn in
Section VII.

II. PHASE PLANE ANALYSIS

Phase plane analysis is a graphic method to analyze the be-
haviors of nonlinear systems, especially systems of segmented
nonlinearity. Given an autonomous system described by differ-
ential equation , the phase trajectory of the
system can be drawn by connecting points along
the direction where time increases. Fig. 1(a) presents a phase
trajectory. The corresponding curve of against time is dis-
played in Fig. 1(b). Obviously the evolution of in time do-
main can be inferred from the profile of the phase trajectory, and
so does the evolution of . Thus, the phase trajectory reflects
the behaviors of the system with more information than the tra-
jectory on time domain. Moreover, the motion patterns of the
phase trajectories reflect the motion patterns of the congestion
management system. The existence of various methods, which
enable the phase trajectories to be sketched quite accurately,
makes the phase plane method superior to finding analytical so-
lution of differential equations, which may not be possible.
Generally, the congestion control scheme in computer net-

works employs different regulation laws for rate increase and
rate decrease, respectively. The switching between rate increase
and rate decrease depends on the congestion state. An example
is illustrated in Fig. 2(a), where is the buffer size and is
the queue length. On the phase plane, the queue system starts
from the initial point, moves along phase trajectory in the
rate increase region, and then reaches the switching line, which
implies the occurrence of certain congestion. Subsequently,
the queue system will be controlled by the regulation laws for
rate decrease to avoid potential congestion, moving along other
phase trajectories, such as or . In this way, the phase trajec-
tory links the isolated subsystems and presents the switching
process graphically. The end point of one subsystem is the ini-
tial point of the other subsystem. Thus, the phase plane method
is particularly suitable for analyzing a system of segmented
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nonlinear characteristics. In fact, the variable structure system
is first investigated using the phase plane analysis method by
Emelyanov in history [21].
Second, using phase plane method, the physical constraints of

buffer size can be included into consideration explicitly. Since
the buffer size is limited, if the motion of system follows phase
trajectory , the buffer overflows. In this condition, though
the system is stable according to the stability criterion in the
linear control theory, this motion pattern is not expected in DCE
because the overflow of the buffer always indicates dropping
packets. Thus, it is crucial to properly fix the buffer size or care-
fully design the regulation laws to constrain the motions of the
system into the shadow area, such as the motion pattern repre-
sented by the phase trajectory .
Third, with phase plane method, we can reveal a special phe-

nomenon called sliding mode motion. As shown in Fig. 2(b),
when the phase trajectory moves into the rate increase area from
the rate decrease area, it maymove back to the rate decrease area
immediately under the control of the regulation laws for rate in-
crease. Repeating this motion, the trajectory will move toward
the equilibrium point along the switching line, independent of
the differential equations describing subsystems. As a result, the
queue length chatters around target point and parameters
for the rate increase subsystem and the rate decrease subsystem
take no effect to the sliding mode motion excepting the ampli-
tude of the chattering. This special motion pattern also cannot
be revealed through the classical analytical approach in linear
control theory. However, it may be the dominating behaviors
of variable structure systems, such as QCN. Hence, we use the
phase plane method to analyze the QCN system in this paper.

III. MODELING QCN

A. Core Mechanism of QCN

The technical goal of the congestion management scheme in
DCE is to hold the queue length around the target point tightly
such that the buffer is neither overflowed nor underutilized.
The overflow of the buffer will trigger the priority-based Pause
mechanism, which may degrade the performance of the whole
network. Meanwhile, empty buffer means low link utilization.
On the contrary, once the queue length is held at the target point,
the QCN system is stable, the queuing delay is fixed, the link
utilization approaches 100%, and no packet will be dropped. A
typical congestion notification scheme developed by the IEEE
802.1Qau work group includes: 1) the congestion detection ap-
proach; 2) transferring congestion information from the conges-
tion point to the reaction point; 3) supporting for rate control at
the edge of network to shape injecting flows according to the
feedback information.
In this section, we will describe the core mechanism of QCN

based on the pseudocode ver. 2.3 [27]. More technical details
can be found in [2]. As shown in Fig. 3, QCN is composed of
two parts:
• The Congestion Point (CP) or the core switch: The CP
takes charge of detecting congestion, generating feedback
messages and sending them to the reaction point.

• The Reaction Point (RP) or the source: The RP decreases
its sending rate according to the feedback message or in-
creases its sending rate periodically, which is achieved by
implementing the rate regulator, such as the leaky bucket
algorithm, at the NIC or the edge switch.

Fig. 3. Framework of QCN: CP is the core switch, and RP can be either NIC
or edge switch implementing the rate limiter.

At CP, the congestion is measured by the queue length and its
variance. The congestion state information consists of two
parts: the current offset of queue length and
the variance of the queue length in a sampling interval

, where is the target queue length and is the
queue length at the last time sampling. is given by

(1)

where is a weight. The switch not only monitors the instanta-
neous queue length , but also “samples” incoming packets
with probability and generates feedback packets. The sam-
pling probability is the function of the degree of congestion.
The generated feedback packet follows the format of 802.3Tag
and is carried to the source address of the sampled packet. In
the generated feedback packet, is quantized to 6 bits for the
convenience of hardware implementation. Only when ,
i.e., when the buffer is excessive and the queue is building up,
feedback packets are generated to ask for reducing the injecting
rate. When , nothing is signaled. The sending rate is in-
creased actively and rapidly instead.
At RP, let denote the current sending rate and denote

the sending rate just before the arrival of the latest feedback
message. RP starts sending at the rate of the network card and
adjusts its sending rate similar to BIC-TCP [29].
Rate Decrease: When a feedback message is received, RP

updates to and decreases the sending rate as follows:

(2)

where is a factor of rate decrease, which is chosen such that
, i.e., the sending rate decreases no more than

50% each time.
Rate Increase: Immediately after the rate decrease, RP enters

into the state of Fast Recovery (FR), increasing the sending rate.
FR persists five cycles, and the time length of each cycle is
set to be the time to send 150 kB data by default. At the end of
each cycle, keeps unchanged and is updated by

(3)

If no feedback message is received in the period FR, RP enters
into the Active Increase (AI) state to probe for more available
bandwidth. At the state of AI, and are updated as follows
in each cycle:

(4)

where is the constant unit of rate increase. The time length
of each cycle at the state of AI is half of that of FR, i.e., the time
to send 75 kB data by default.
Core elements of QCN are the rate adjustment algorithm and

the metric to measure congestion. Historically, the AIMD al-
gorithm employed by TCP is inherited as the rate adjustment
algorithm in DCE. Subsequently, the rate adjustment algorithm
of BIC-TCP is introduced into QCN to be competent for the
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high link speed of DCE. The queue length is used to indicate
the congestion similar to REM [13] in DCE. With the collabo-
ration of the CP and the RP, the queue length is expected to be
held around the target point in the QCN system.

B. Assumption

To model the QCN system, we make four assumptions.
1) Considering the regular and symmetrical network topolo-
gies in data centers, such as Fat-Tree [9] and BCube [23],
and the special traffic patterns driven by the parallel
reads/writes in cluster file systems, such as Lustre [16],
the first assumption is that all the sources are homoge-
neous—namely they have the same characteristics and
experience the same round-trip time.

2) The propagation delay in DCE networks is normally within
the order of a few microseconds, corresponding to the net-
work radius of several hundred meters. The number of the
on-the-fly packets in the link with 10-Gb/s bandwidth and
2- s propagation delay (which implies that the length of
the link is 400 m) is only about 2.1 Hence, the propagation
delay is negligible.

3) Since links are assumed to be of high capacity in DCE net-
works, the number of bit streams in the links is so large
that it appears like continuous flow fluid, the fluid-flow ap-
proximation, which is extensively used in network mod-
eling works, such as [25] and [26], is reasonable.

4) In reality, the sampling probability is designed to be the
function of the degree of congestion to reduce the over-
heads caused by transferring feedback messages. Because
large will add overheads, small may fail to satisfy the
sampling theorem in the condition of heavy congestion.
Theoretically, once the sampling theorem is satisfied, the
variance of has little impacts on the behaviors of the QCN
system. Therefore, in our analysis, we assume that is a
constant, satisfying the sampling theorem.

C. Fluid-Flow Model of QCN

Given the aforementioned four assumptions, we can model
QCN with a set of differential equations. Let denote the
sending rate of each source since sources are homogeneous in
DCE networks. The fluid-flow approximation implies that the
queue length and rate are continuous and differen-
tiable. Considering the queue associated with bottleneck link,
we have

(5)

where is the number of active flows sharing the bottleneck
link and denotes the capacity of this bottleneck link. The dif-
ference of the queue length in a sampling interval is

(6)

where is the sampling probability. Combining (1), (5), and (6),
the feedback variable can be rewritten as

(7)

1On average, we assume that the packet length is 1500 kB. Hence, the number
of the on-the-fly packets is

TABLE I
SUMMARY OF PARAMETERS DEFINITIONS

Referring to (2), we can obtain the differential equation for rate
decrease, i.e.,

(8)

Now, we consider the rate increase subsystem. In reality, the
time interval of each cycle of FR and AI can be measured by
counters or timers in QCN. We only consider the use of timers
for the convenience of modeling. This simplicity does not lose
the essence of the FR algorithm, namely the binary search of
the proper point for rate recovery. Our model can still reflect
the motion patterns of QCN. Let denote the time interval of
each cycle in the state of FR, and the time interval of each cycle
in the state of AI is . From (3), we can get the differential
equation describing the behaviors of QCN in the period of FR

(9)

where is the target sending rate of FR, which equals the
sending rate just before the latest rate decrease. From (4), we
can get the differential equations for the state of AI

(10)

(11)

So far, the core dynamic behaviors of the QCN system can
be described by a set of differential equations, which are of
characteristic of segmented nonlinearity. The rate decrease sub-
system is described by (5) and (8). The procedure of FR is de-
scribed by (5) and (9), and the procedure of AI is described
by (5), (10), and (11). All the equations aforementioned are re-
lated to the queue length and the sending rate , while

can be expressed by in (5). Hence, the QCN system
can be described by differential equations only associated with

, namely the behaviors of the queue system stand for the
behaviors of the whole QCN system. Our subsequent analysis
will focus on the queue system. Above, only the core mecha-
nism of QCN is modeled. However, the behaviors of the QCN
system will also be constrained by the buffer size physically as
discussed in Section II. The effects of buffer size can be consid-
ered separately in the procedure of phase plane analysis. Next,
we will explore the behaviors of the QCN system by analyzing
this fluid-flow model using the phase plan method. By the way,
to facilitate the search for the definition of parameters, we sum-
marize them in Table I.

IV. BEHAVIORS OF THE QCN SYSTEM

Before analyzing our model quantitatively, we first make the
qualitative analysis. More specifically, we analyze the motion
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Fig. 4. Phase trajectories in the rate decrease area when . (a) . (b)
.

patterns of each subsystem of QCN and then combine these mo-
tion patterns to obtain all the possible motion patterns of the
global QCN system.

A. Motion Patterns of Subsystems

For the sake of simplicity, we define the variable and
make a linear variable substitution

(12)

With this substitution, (7) can be rewritten as

(13)

Subsequently, we will summarize possible motion patterns
when QCN stays in the state of rate decrease, FR and AI,
respectively.
1) Rate Decrease: Referring to (5), (8), (12), and (13), we

can get the differential equations describing rate decrease sub-
system of QCN

(14)

Define functions and
. Since both and are polynomials,

for and any , there exists
such that , namely the
Lipschitz condition is satisfied. Hence, the nonlinear differential
equations (14) have a solution uniquely determined by the ini-
tial value [11]. The origin is obviously
a solution of (14), and thus is the singular point. Lyapunov
has shown that the stability and the behaviors of nonlinear
differential equations in the neighborhood of a singular point
can be found from their linearized version about the singular
point [18]. The linearized version of (14) at the singular point,
i.e., the origin, is

(15)

The standard form of this second-order autonomous system is

(16)

where and . The phase trajectories of
a standard formed second-order differential equation have been
presented in much literature, such as [12].
• When , i.e., , the phase trajectories
of differential equation (16) are spirals converging to the
origin, and the origin is a stable focus. The motion pattern
of the phase trajectories is similar to Fig. 1.

Fig. 5. Phase trajectories in the procedure of FR. (a) . (b) .

• When , i.e., , the phase trajectories
of differential equation (16) are parabolas moving toward
the origin, and is a stable node. The motion pattern
of the phase trajectories is shown in Fig. 4.

Note that when , the parabolas have only one asymptotic
line, while two asymptotic lines for the case .
2) Rate Increase: The procedure of FR is described by (5)

and (9). Substituting (12) into (9), we have

(17)

Defining , we can combine (5) and (17) into a
second-order differential equation

(18)

The phase trajectories of this second-order system can be drawn
using the isoclinal method [12]. As shown in Fig. 5, all the phase
trajectories of differential equation (18), except the line
, start from infinity with slope and approach to the line

eventually. The phase trajectories move toward the
positive direction of the horizontal axis when , while
they move along the opposite direction when . When

, the phase trajectories are straight lines with slope ,
plus the line , i.e., the abscissa axis.
The procedure of AI is described by (5), (10), and (11).

Solving (10), we can get

(19)

Combining (11), (12), (19), and (5), we can obtain the differen-
tial equations for the AI procedure

(20)

We can further combine (5) and (20) into a second-order differ-
ential equation

(21)

The differential equation above is similar to (18), and so are
the corresponding phase trajectories. However, in the procedure
of AI, the slope of phase trajectories starting from infinity are

, and finally all the phase trajectories will move along the
lines with slope instead of the line . When

, the phase trajectories defined by differential equation
(21) turn to the negative direction of horizontal axis for a while,
but its final direction is decided by slope instead of the
sign of . The phase trajectories of differential equation (21)
corresponding to the sign of are shown in Fig. 6(a) and (b),
respectively.
3) Switching Process: The main association of subsystems

is the initial states. More specifically, as shown in Fig. 5, the
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motion pattern of the rate increase subsystem depends on its
initial state, namely the sign of , instead of the
parameters setting. Let denote the initial sending rate of FR,
and denote the target sending rate of FR. The sending rate
changes from to when the QCN system switches from the
rate decrease subsystem into the rate increase subsystem. Since
the sending rate is decreased by no more than 50% each time,
we have

(22)
also indicates the degree of congestion: means

the congestion is heavy since the rate is decreased by a large
amount, means the congestion is slight on the contrary.
The motion pattern of the global QCN system changes itself de-
pending on the degree of congestion. Moreover, whether QCN
enters into the procedure of AI also depends on the degree of
congestion, namely whether the sending rate can be recovered
in the procedure of FR. Subsequently, combining possible phase
trajectories in each subsystem, we will explore possible motion
patterns of the global QCN system case by case.

B. Motion Patterns of the Global QCN System

Generally speaking, the initial state of the QCN system is
, where is a very large value since sources start

at the rate of the network card. Therefore, the initial state of the
QCN system is in the rate decrease area. The queue length will
increase and exceed the target point quickly after the initial
regulation process, i.e., it will reach the point promptly,
where . We start our analysis of the QCN system from
point . Starting from point , the phase trajectory of
the QCN system is decided by (16) first. In the rate decrease
area, if , the phase trajectory is spiral. When , the
phase trajectory is parabola. The value of is decided by the
parameters setting.
1) Case 1 (Parabola or ): Since the phase trajectories

of the rate decrease subsystem differ from each other when
and , as shown in Fig. 4, the global QCN system has

two motion patterns in this case.
If the switching line is below the asymptotic

line of the parabola in the fourth quadrant, the phase trajectory
of QCN will approach to the origin directly without passing .
The corresponding motion pattern is shown in Fig. 4.

If the switching line is above the asymptotic line of the
parabola in the fourth quadrant, the phase trajectory of QCNwill
reach in the fourth quadrant starting from in the rate de-
crease area. Fig. 7 illustrates this phenomenon. Phase trajecto-
ries and are similar to that in Fig. 4, describing the motion
patterns of the rate decrease subsystem. The phase trajectory
of the global QCN system will move along the solid part of
first, and then pass through . The following phase trajectory
is , which denotes the procedure of rate increase. Finally, the
phase trajectory of the global QCN systemwill move back to the
rate decrease area, following the solid part of after passing
again, and then converge to the origin directly.
In summary, when , the phase trajectory of QCN will

move to the origin after passing through zero or twice.
2) Case 2 (Spiral or ): Starting from the point

in the rate decrease area, the phase trajectory of QCN will reach
the switching line in the fourth quadrant after a period of time.
Assume that the th time the phase trajectory of QCN reaches
the switching line at point via the rate decrease area and

Fig. 6. Phase trajectories in the procedure of AI. (a) . (b) .

Fig. 7. Phase trajectory of the global QCN system when .

is the corresponding target sending rate for the following fast
recovery. In this way, (22) can be rewritten as

(23)

Point exists when QCN starts from . Furthermore,
in the fourth quadrant. After passing point , the

phase trajectory of QCN has several possible motion patterns
according to Fig. 5, depending on both the parameters setting
and the system states. Subsequently, we will show these pos-
sible motion patterns case by case. For the convenience of dis-
cussion, let denote the th time the phase trajectory of
QCN reaches the switching line via the rate increase area.
Sliding Mode Motion Pattern: Passing point , the

phase trajectory of QCN may move back to the rate decrease
area immediately after it enters into the rate increase area,
as shown in Fig. 8. Intuitively, the curve and curve in
Fig. 8 are corresponding to the cases and ,
respectively. When the phase trajectory of the global QCN
system is composed by the spiral in the rate decrease area and
curve or curve in the rate increase area, the QCN system
enters into the sliding mode motion as we have discussed in
Section II. In the sliding mode motion, the phase trajectory
of the global QCN system approaches to the origin along the
switching line by switching between the rate decrease area
and the rate increase area frequently. The following proposition
shows the exact cases in which the sliding mode motion occurs.
Proposition 1: The slidingmodemotion pattern occurs in any

of the following cases:
and ;

and ;

and .
Proof: The necessary and sufficient condition for the oc-

currence of the sliding mode motion is [12].
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Fig. 8. Possible phase trajectory of the global QCN system when .
Curves and are taken from Fig. 5(a) and (b), respectively.

Fig. 9. Possible phase trajectory of the global QCN system when .
Curve and are taken from Fig. 5(a).

• Referring to (16) and (13), inequality

is equivalent to inequality . In the fourth quadrant,

inequality holds. Thus, the switching line is reach-
able from the rate decrease area.

• Furthermore, referring to (18) and (13), inequality
is equivalent to

(24)

Obviously, inequality (24) holds when any of the above
three conditions is satisfied.

Except for Fig. 8, which is the sketch map of Cases and
of Proposition 1, we represent the Case of Proposition 1

by the phase trajectory in Fig. 9.
Normal Motion Pattern: If QCN does not enter into the

sliding mode motion, the phase trajectory of QCN will be
dominated by (18) in the procedure of FR after passing point

in the switching line . Then, it either moves back
to the rate decrease area in , but not immediately, or enters
into the procedure of AI after . In both cases, the phase
trajectory of QCN finally moves back to the rate decrease area,
according to Figs. 5 and 6. Therefore, exists. Since
the phase trajectory of QCN is spiral in the rate decrease area,

must exist when exists. Passing point
from the rate decrease area, several motion patterns

may occur according to Figs. 5 and 6.
Curve in Fig. 9 shows a possible motion pattern that the

phase trajectory of QCN moves back to the rate decrease area
in . Passing point , the phase trajectory of QCN
moves along curve , then reaches the switching line at

point , and finally moves back to the switching line
at point along the spirals.
Proposition 2: Passing point , the phase trajectory

of QCN can move back to the rate decrease area in in the
following case.

and

Proof: Since , the QCN system would never
enter into the sliding mode motion referring to Proposition 1.
In the procedure of FR, the solution of (18) is

(25)

Define function

(26)

Then, the derivative of function is

(27)

Since and , function is strictly monotone
increasing. Let , there is

(28)

The bound holds because and . Hence,

function increases from negative to positive with the in-
crease of time . Because and ,

function decreases to be negative at first and then increases
to be positive with the increase of time . Since function is
continuous, has a unique solution except .
Furthermore, for any .
On the other hand, referring to (25), there is

(29)

The bound holds because . Hence,
. It means Case is sufficient for the phase trajectory

of QCN moving back to the rate decrease area in .
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Fig. 10. Possible phase trajectory of the global QCN system with .
Curve , , , and are taken from Figs. 5(a), 6(a), 5(b) and 6(b),
respectively.

In the rest of the cases, the phase trajectory of QCN cannot
move back to the rate decrease area in , and the QCN system
will enter into the procedure of AI after . In the procedure
of AI, the phase trajectory of QCN is controlled by differen-
tial equation (21), and the corresponding phase trajectories are
shown in Fig. 6. Subsequently, according to Fig. 6, the phase
trajectory of QCN will pass through the switching line at point

and then follow the spiral until reaching the switching
line at point from the rate decrease area.
Proposition 3: Passing point , the phase trajectory of

QCN can not move back to the rate decrease area in in the
following cases:

and
and ;

and .
Proof: Similar to the proof of Proposition 2, we will show

that in all of the three cases here.
• When Case holds, referring to (22) and (27), we can
know that function decreases with the increase of
time and accordingly . Similar to (28), we
can also deduce that . In total, there is

.
• When Case holds, referring to (22) and (27), we have

. Hence, .
• When Case holds, according to (29).
In all the three cases, since , the phase trajectory

of QCN cannot return back to the rate decrease area in .
The combination of phase trajectories and in

Fig. 10 represents Case of Proposition 3, the combination
of phase trajectories and in Fig. 10 represents Case
of Proposition 3, and the combination of phase trajectories
and in Fig. 11 represents Case of Proposition 3.

C. Discussion

In (23) and Cases , , , , and , variables and
are bounded by each other. Consequently, some of the cor-

responding motion patterns may be impossible to occur. For ex-
ample, we can deduce that

from (23). Hence, when , there is . If

, Cases and would never occur. On the con-
trary, all the possible motion patterns of the global QCN system
have been explored since Cases – make up a complete set.
In sum, starting from the initial states, the phase trajectory

of QCN has several possible motion patterns due to the system
states and the parameters setting. We have studied all of them
case by case. When , i.e., , the phase

Fig. 11. Possible phase trajectory of the global QCN system with .
Curve and are taken from Figs. 5(b) and 6(b), respectively.

trajectory of QCN converges to the origin without switching
or switching twice. When any of Cases – is satisfied, the
sliding mode motion pattern occurs. In these cases, the phase
trajectory of QCN will move toward the origin directly along
the switching line. When any of the rest of the cases is satis-
fied, the phase trajectory of QCN will first reach the switching
line at point from the rate decrease area. Then, starting
from point in the switching line, the phase trajectory of
QCNmoves to point in the switching line from the
rate increase area with different motion patterns. The value of
keeps increasing.

V. STABILITY ANALYSIS OF QCN

A. Preliminary

Based on the above qualitative analysis, we do quantitative
analysis to provide sufficient conditions for the stability of
QCN. More specifically, we explore sufficient conditions such
that for each possible motion pattern of the global
QCN system. If for each motion pattern, the value
of decreases with the increase of until , namely
QCN enters into the stable state gradually. In contrast to the
motion patterns being separated by conditions associated with

and , the sufficient conditions provided here should
be independent of and since these two parameters are
associated with the system state.
Moreover, as we have shown in Fig. 2(a), the phase trajec-

tory of QCN may be disturbed by the limited buffer size. The
overflow of buffer cannot be tolerated in the QCN system since
it will result in pausing links, in which condition the network
is stalled and latency becomes unacceptable large. Hence, the
maximum buffer size should be estimated quantitatively. Con-
sidering the special requirements of DCE, we introduce the con-
ception of strong stability for the QCN system.
Definition 1: If , where is the buffer size and
is the queue length in the buffer, the QCN system is strongly

stable.

B. Stability Analysis

Now we will analyze the strong stability of the QCN system
case by case. When the QCN system switches from one sub-
space to another, we recalculate the time, i.e., the endpoint of
the behaviors in one subspace is the beginning of the behaviors
in the next subspace.
1) Case 1 : In this case, the phase trajectory of QCN

approaches to the origin without switching or switching twice.
Namely, or . However, referring to the strong sta-
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bility of the QCN system, we still need to consider the physical
constraints of buffer size . The solutions of the character-
istic equation of (16) are

(30)

where .
• If , the two real eigenvalues of differential (16) are
identical, i.e., . Thus, the solution of
differential equation (16) is

(31)

where and are constant decided by the initial value.
With initial value , we have
and . Since , we can get the maximum
of by solving from equation . The solution
is , and thus the maximum of is

(32)

• If , the two real eigenvalues of differential equation
(16) are different from each other. Thus, the solution of
differential equation (16) is

(33)

where and are constants decided by the initial
values. Rearranging (33), we have

(34)

where . Equation (34) confirms that
the phase trajectories of the rate decrease subsystem are
parabolas when . Substituting the initial value
into (34), we can get . When in
(34), reaches its maximum, which can be computed
as follows:

(35)

Since , and ,
there is

(36)

In sum, we have the following lemma.
Lemma 1: If and , the QCN system is

strongly stable.
2) Case 2 : In this case, the phase trajectories of

rate decrease subsystem are spirals. The solutions of the
characteristic equation of differential equation (16) are complex
conjugate in this case

(37)

where . The solution of (16) is

(38)

where and are coefficients decided by the initial values.

(39)

Assume the spiral starting from point reaches the
switching line at point . Due to the physical con-
straints of the buffer size , there is for any .
Substituting the initial value into (39), we can get the
explicit expression of and with parameters of QCN. Then,
from (38) and , we can work out the time that
the phase trajectory of QCN takes to move from point
to point via the rate decrease area. The solution is

, and thus

(40)

Similarly, we can know that

(41)

When QCN starts from the initial value , the phase tra-
jectory of QCN will reach the switching line at point
in the fourth quadrant. Since , there exists such
that . Since and

is the maximum of . The value of can be com-
puted similar to (40)

(42)
Crossing the switching line at point , the phase tra-

jectory of QCN will be dominated by differential equation (18),
and then the sending rate will be increased. At this point, sev-
eral motion patterns may occur as we have shown in Section VI.
Subsequently, we will analyze them one by one.
In Cases – , the phase trajectory of QCN follows the

sliding mode motion pattern and converges to the origin along
the switching line directly. Thus, there is in all
of these three cases.
In Case , inequalities and

hold. The
phase trajectory of QCN moves back to the rate decrease area
in . Assume the phase trajectory reaches the switching line
at point at time . Referring to (26), is the solution
of , i.e.,

(43)

Substituting (43) into (25), we have

(44)

and

(45)

Therefore, when , inequality holds, and thus

referring to (41).
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In Cases – , the phase trajectory of QCN enters into the
procedure of AI after , and then moves back to the rate de-
crease area by passing the switching line at point . Re-
ferring to (25), the initial value of the AI procedure is

(46)
The solution of the differential equation (21), which constrains
the phase trajectories of the AI procedure, is

(47)

From (46) and (23), we can deduce that

(48)

With this result, the derivative of satisfies

(49)
Thus, function increases with the increase of the time . Let
denote the interval of the AI procedure and define function

. There are and

(50)
On the other hand, can be rewritten as

(51)
Substituting (51) and (46) into (47), we have

(52)

Consequently, we can deduce as follows:

(53)

where

(54)

Once , inequality (53) holds. The derivation of function
is

(55)

Therefore, when , there is , and thus func-
tion is monotone increasing function. Accordingly, once
the inequality holds, there is

, and thus inequality (53) holds. Referring to
(51), we have

(56)

Subsequently, we will provide sufficient conditions for either
or .

In Case , inequalities , and
hold.
• We first consider the subcase that . Referring to
(54), we have

(57)

Substituting this result into (56), we have

(58)

Therefore, when , and ,
inequality holds. As a step further, referring to
inequality (50) and (41), there is in this subcase,

and thus .
Summarizing Cases , , and this subcase of Case and

referring to (42), we have the following lemma.
Lemma 2: The QCN system is strongly stable when
and .

• Secondly, we will consider the subcase that
. Define . In (54), since ,

there is

(59)



JIANG et al.: PHASE PLANE ANALYSIS OF QUANTIZED CONGESTION NOTIFICATION FOR DATA CENTER ETHERNET 11

where . Define function

(60)

We can know that and
is monotone increasing function since

(61)

Hence

(62)

If , then

. Or else, since , there is

(63)

Define function
and let , we have

(64)

Define function . The
derivative of function is

(65)

Since , there is . When
, i.e., , we have , and thus

is monotone decreasing function. Assume satis-
fies equation . When , and
thus is monotone decreasing function in .
Conversely, when , and thus is
monotone increasing function in . Consequently, we
have . On the other side, when ,
there is

(66)

and thus

(67)

With this result and referring to (63), we have

(68)

In total, when ,

and , inequality
holds. As a step further, referring to inequality (50) and
(41), there is in this subcase, and thus

.
Summarizing Cases , , and this part of Case and re-

ferring to (40) and (42), we have the following lemma.
Lemma 3: The QCN system is strongly stable when

and

.

• Thirdly, we will consider the subcase that . In
this subcase, we have . Hence, referring to
(65), there is , and thus is a monotone in-
creasing function. Assume satisfies . When

, and thus is a monotone in-
creasing function in . Conversely, when

, and thus is a monotone decreasing func-
tion in . Consequently, we have .
Since , (66) holds, and thus

(69)

The bound holds because . On the other side, when
, referring to (54), we have

(70)
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Substituting (69) and (70) into (56), we can know that when
, there is

(71)

Therefore, when , we cannot provide sufficient
condition for either or .

In Case , inequalities and hold. Thus,
there is , and can be close to . Conse-
quently, (71) holds, and thus we cannot provide sufficient con-
dition for either or .

InCase , inequalities , and

hold. When , there is

(72)

The first bound holds because and . The

second bound holds because

. Therefore, from (50) and (72), there is
when . As a step further, referring to (41), there is

.

C. Discussion

1) Stability: We can summarize all the three lemmas into the
following theorem.
Theorem 1: If , and any of the following

conditions is satisfied, the QCN system is strongly stable.

1) , i.e., ;

2) and , i.e., and ;

3) and , i.e.,

and

.

In reality, . Hence, it is conditions 2) and 3)
that mainly take effect in reality in Theorem 1. Consequently,
the comparison between and is crucial. However, the
value of is decided by not only parameters and but also

parameter . Given a fixed parameters setting, the QCN system
may not be able to reach the stable state when the available
bandwidth changes. When the Ethernet speed increases to
100 Gb/s, the range of the variation of becomes large. In this
situation, it will be hard to set parameters for QCN.
Moreover, conditions 2) and 3) are obtained from Cases ,
, and part of Case . Because , which represents the

target sending rate of the procedure of FR, would rarely become
negative in reality, the state of QCN mainly stays in Case . It
means that QCN approaches to the stable state mainly through
the sliding mode motion. That is why the queue length always
stays close to the target point as shown in simulations and ex-
periments [14], [30].
In addition, summarizing cases , , , and , we know

that inequality holds when and
. Since this conclusion is associated with , it cannot

be taken as the sufficient condition for the stability of the QCN
system. However, since would rarely become negative in
reality, we can usually have the following conclusion, which is
stronger than Theorem 1.
Conclusion: If and , the QCN

system is strongly stable.
When any of the three sufficient conditions in Theorem 1 is

satisfied, there are . Hence, we can know not
only that QCN is strongly stable, but also that with the increase
of , the convergence speed of is exponential.
2) Buffer Size: The Priority-based Pause mechanism is de-

veloped to avoid dropping packets. When it is triggered, the la-
tency will become unexpectedly large, even if the long-term tree
saturation can be eliminated by QCN. Thus, the Priority-based
Pause mechanism works as the last insurance of no packets loss.
It is still crucial to set buffer size properly for QCN to avoid trig-
gering the Priority-based Pause mechanism frequently.
Assume that Gb/s and the propagation delay is

10 s in DCE. According to the classical rule-of-thumb for
buffer dimensioning, the buffer size is suggested to be 100 kb.

Theorem 1 shows the largest queue length is when

the QCN system starts from and is stable. Assume
kb, , and , as recommended in [14]. The-

orem 1 tells that the strongly stable QCN system requires 56Mb
buffer size when QCN starts at the rate of NIC, i.e., ,
whereas about 1.2 Mb buffer size when the initial sending rate
of each source is , i.e., . Therefore, it is reasonable to
set the initial sending rate to a smaller value than the rate of NIC,
and set the buffer size larger than the bandwidth delay product
in QCN.

VI. EXPERIMENTS

The NetFPGA [4] platform is a programmable hardware
platform for fast prototyping. A NetFPGA card consists of a
Xilinx Virtex-II Pro FPGA, four 1-Gb/s Ethernet ports, and
4 MB SRAM. The advantages of using NetFPGA are that a lot
of reference designs can be extended, the ability of handing
data in speed of Gb/s, and memory-mapped I/O registers
accessed by host PC, which can help to solve the intractable
debug problem in hardware design. The disadvantage is the
limited number of ports in each NetFPGA card. To verify our
theoretical analysis, we implement the core mechanism of QCN
on the NetFPGA platform.
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Fig. 12. Evolution of the queue length at the bottleneck link with different pa-
rameters. (a) Parameter is changed. (b) Parameter is changed.

Fig. 13. Parking lot topology.

Unless declared explicitly, all the experiments use the fol-
lowing default parameters and configurations. The link capacity
is 1 Gb/s. The link lengths are within 10 m. The output buffer
size of switch is 256 kB. The default parameters for the CP of
QCN are , and kB. is quantized
to 6 bits in the feedback packets. The default parameters for the
RP of QCN are Mb/s, and is the time to
send kB data. Under the default parameters setting,

there are .
The experiments are first conducted using a three-sources

dumbbell topology. We let sources start long-lived flows at the
speed of 1 Gb/s, and then change parameter every 2 s. From
beginning to the end, there are kB, kB,

kB, kB, and accordingly
, respectively. The evolution

of the queue length at the bottleneck link is shown in Fig. 12(a).
Corresponding to our conclusion, when in the first 6 s,
the buffer almost never becomes empty or full, and the QCN
system is stable. More specifically, the queue length only chat-
ters around the target point in the first 4 s. This is consistent with
what we have discussed around Theorem 1. Namely, in reality,
conditions 2) and 3) of Theorem 1 mainly take effect, and QCN
approaches to the stable state mainly through the sliding mode
motion. On the contrary, when in the last 2 s, the buffer
becomes empty frequently, and the QCN system becomes un-
stable.
Similar experimental results on parameter are shown in

Fig. 12(b). Parameter is changed every 2 s, and the values of
are 0.0025, 0.005, 0.01, and 0.02, respectively. Correspond-

ingly, there are ,
and , respectively. Obviously, the evolution of the queue
length in Fig. 12(b) has the same trends as in Fig. 12(a). There-
fore, these result verify Theorem 1 as well.
Secondly, we verify our theoretical results on the parking lot

topology. As shown in Fig. 13, C1, C2, and C3 are CPs. S1 and
S2 start background flows of fixed size 250 Mb/s destined to
R1 and R2 in and , respectively. S3 and S4 are
RPs who start long-lived flows destined to R3. Obviously, the
bottleneck link is C1-C2 in and changes to be C2-C3 in

Fig. 14. Evolution of the queue length at the bottleneck link on the parking lot
topology. (a) kB. (b) kB. (c) kB. (d) kB.

. Experiments are repeated with different parameter ,
and the corresponding results are shown in Fig. 14. The evo-
lution of the queue length in Fig. 14 has the same trends as in
Fig. 12(a). Therefore, in the same way, these results also agree
with Theorem 1.

VII. CONCLUSION

Recently, QCN has been ratified to be the standard for the
end-to-end congestion management mechanism over Ethernet,
which is a step further in enhancing Ethernet to be the unified
switch fabric of DCNs. Because QCN is heuristically designed
and involves the property of variable structure, the theoretical
insights on QCN are insufficient. Using the phase plane method,
which is suitable for systems of variable structure, we analyze
the QCN system in this paper. We present the panorama of the
behaviors of the QCN system and deduce several sufficient con-
ditions for the strongly stable QCN system. These sufficient
conditions can directly serve as the guidelines toward proper
parameters settings of QCN. Theoretical analysis shows that the
stability of QCN system is mainly ensured by the sliding mode
motion, which is also the reason for the chattering of the queue
length in reality. However, the range of sliding mode motion re-
gion and whether QCN can enter into the sliding mode motion
depend on not only the parameters settings but also the network
configurations. Thus, the performance of QCN depends on not
only the parameters settings but also the network configurations.
Finally, experiments on the NetFPGA platform verify the theo-
retical results.
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