
Modeling and Solving TCP Incast Problem
in Data Center Networks

Jiao Zhang, Fengyuan Ren,Member, IEEE, Li Tang, and Chuang Lin, Senior Member, IEEE

Abstract—TCP Incast problem attracts much attention due to the catastrophic goodput drop. In this paper, a goodput model of the

problem is built to understand why goodput collapse occurs and a solution to the problem based on the theoretical analysis is proposed.

We found that the TCP Incast goodput deterioration is mainly caused by two types of timeouts, one happens at the tail of data blocks

and dominates the goodput when the number of senders is small, while the other one at the head of data blocks and governs the

goodput when the number of senders is large. The proposed model describes the relationship between these two types of timeouts and

the Incast communication pattern, block size, bottleneck buffer size, and so on. The simulation results indicate that the model well

characterizes the features of the TCP Incast problem. Enlightened by the analysis, a PRiority-based solution to the TCP INcast

problem (PRIN) is proposed, which avoids timeouts at the head of blocks by reducing TCP send window and prevents timeouts at the

tail of blocks by leveraging priority technology. The experimental results show that PRIN solves the TCP Incast problem.

Index Terms—Data center network, TCP incast, modeling, goodput, experiment

Ç

1 INTRODUCTION

TCP Incast has risen to be a critical problem recently in
data center networks due to its catastrophic goodput

collapse [2], [3], [4]. Incast, a communication pattern, was
first termed by Nagle et al. in file storage systems [5]. In the
Incast communication pattern, multiple senders concur-
rently transmit data blocks to a single receiver, and any
sender cannot send another data block until all the senders
finish transmitting the current ones. As the number of send-
ers increases, the goodput of the receiver will become lower
than the capacity of the bottleneck link in one or even two
orders of magnitudes. The Incast communication pattern
exists in many popular applications, such as cluster-based
storage systems [5], [6], [7], MapReduce-based applications,
including web research, digital media processing and so on.

Much attempt has been made to avoid the TCP perfor-
mance deterioration in the Incast communication pattern
[2], [3], [4], [8], [9]. However, few work has been done to
understand the radical reasons of the TCP Incast problem
theoretically. In this paper, first a goodput model of the
TCP Incast problem is built to understand the problem in
depth, then enlightened by the goodput model, a simple
TCP modification mechanism, named PRIN, is proposed to
address the problem.

The main challenges of modeling the TCP Incast goodput
are twofold. (1) Most of traditional modeling work on TCP
assumes that the application layer always delivers enough

data to the transport layer [10], [11], [12], [13], [14]. Thus,
the goodput of TCP will not be affected due to insufficient
data from the application layer. However, the workflow in
our model exhibits the Incast communication pattern. All
the senders deliver data from the application layer to the
transport layer synchronously. The laggard sender will
cause that the transport layers of the other ones have no
data to transmit. (2) The proposed TCP Incast goodput
model describes the overall goodput of the bottleneck link
that contains multiple flows instead of focusing on the
throughput of only one flow as traditional TCP goodput
models do. It is difficult to model the interaction of multiple
flows in the Incast communication pattern.

In the proposed TCP Incast goodput model, we summa-
rize that the goodput collapse in the incast communication
pattern is mainly caused by two kinds of TimeOuts (TO).

� Block tail TimeOut (BTTO). It is caused by the special
Incast communication pattern. Since each sender
cannot get the next block data from the application
layer until all the senders finish transmitting the
current ones, if one of the last three packets (assume
three duplicate ACKs are needed to trigger fast
retransmission (FR)) in current block of a sender is
dropped, then the sender will not receive enough
ACKs to trigger FR, a timeout naturally occurs.

� Block head TimeOut (BHTO). BHTO is apt to happen
when the number of senders becomes larger. During
transmitting a block, some senders finish earlier, and
they have to wait for the others to finish without tak-
ing any bandwidth. Therefore, the behindhand flows
will finish their blocks using more capacity on aver-
age, which results that they have larger send win-
dow size on average when finishing their current
blocks. At the beginning of the next blocks, all the
senders inject their whole windows to the small
Ethernet buffer, which usually causes lots of
dropped packets. If a flow unfortunately losses its
whole window, which can easily happen since the

� J. Zhang is with the School of Information and Communication Engineer-
ing, BUPT and State Key Laboratory of Networking and Switching Tech-
nology, BUPT, China. E-mail: jiaozhang@bupt.edu.cn.

� F. Ren, L. Tang, and C. Lin are with the Department of Computer Science
and Technology, Tsinghua University, Beijing, China and the Tsinghua
National Laboratory for Information Science and Technology, Beijing,
China. E-mail: {renfy, tangli, clin}@csnet1.cs.tsinghua.edu.cn.

Manuscript received 12 Oct. 2013; accepted 16 Dec. 2013. Date of publication
10 Mar. 2014; date of current version 9 Jan. 2015.
Recommended for acceptance by V. B. Misic.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2310210

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



window of each flow becomes smaller as the number
of senders increases, then it will enter a TO period.

Enlightened by the theoretical analysis results of the TCP
Incast goodput model, we developed a simple mechanism
PRIN which modifies TCP a little and avoids the two kinds
of timeouts, BHTO and BTTO. The proposed mechanism
reduces the send window of each connection at the start of
blocks to avoid BHTOs, and prevents BTTOs by configuring
higher priority for the last three packets at the end of blocks
to prevent them from dropping. The existed priority mecha-
nisms mainly include IEEE 802.1p [15], differentiated serv-
ices code point [16], type Of services [17], and so on. IEEE
802.1p has long been implemented in most switches [18]
and it cooperates with IEEE 802.1q (VLAN). VLAN is
widely used in today’s enterprise networks [19] and is
extended to be virtual eXtensible local area network to
adapt to virtualized data center networks recently [20].
Thus, we employ IEEE 802.1p to configure the priority in
our implementation of PRIN.

The performance of PRIN is evaluated on a real testbed
that is consist of Dell servers, a HP ProCurve 2910al Ether-
net Switch and a Cisco Catalyst 2960G Ethernet Gigabit
Switch. The experimental results demonstrate that the pro-
posed mechanism, RPIN, avoids almost all the TOs and
thus averts the goodput collapse in Incast communication
pattern. From the results, we can also infer that the perfor-
mance deterioration of Incast applications is indeed mainly
caused by BHTOs and BTTOs.

The remainder of the paper is organized as follows. Next
section introduces related work. In Section 3, the main
assumptions and denotations used in our goodput model
are listed. Subsequently, the goodput of TCP Incast with
and without awnd limitation is modeled and validated in
Sections 4 and 5, respectively. In Section 6, the mechanism,
PRIN, is proposed to avoid BHTOs and BTTOs, and the
implementation of PRIN is described. In Section 7, the per-
formance of the proposed PRIN is evaluated on a real
testbed. Finally, the paper is concluded in Section 8.

2 RELATED WORK

The existing approaches to solve the TCP Incast problem
can be classified into three categories.

First, avoiding or reducing TOs by modifying TCP. In [2],
several trials have been made to avoid TOs, such as reducing
the duplicate ACK threshold of entering fast retransmission
from 3 to 1, disabling slow start phase, and trying different
TCP versions. However, most of these methods are ineffec-
tive. Since the serious bandwidth wastage in TCP Incast is
caused by the large RTOmin, which typically equals 200milli-
seconds in TCP, Vasudevan et al. suggested decreasing
RTOmin to microsecond-granularity to reduce the capacity
wastage caused by TOs. This method reduces the bandwidth
wastage caused by TOperiods.However, it does not decrease
the number of TO periods. Since a TCP flow will enter slow
start phase after a TO period, the frequent slow start periods
will possibly reduce the goodput of flows. Besides, small
RTOmin is likely to cause spurious retransmission.

The above methods attempt to modify TCP at the sender
side. Wu et al. proposed ICTCP [8] which controls flow rate
by adaptively adjusting the awnd at the receiver side. The

bottleneck link is assumed to directly connect to the
receiver. The receiver estimates the available bandwidth
and round trip time (RTT) to compute the reasonable awnd

and thus each flow fairly injects proper traffic to the net-
work. However, exact estimation of real-time available
bandwidth and RTT is challenging. Foremost, ICTCP fails
to work well if the bottleneck is not the link that connects to
the receiver as stated in [8].

Second, replacing TCP with other new transport proto-
cols. Some recently proposed new transport protocols for
data centers can also mitigate the TCP Incast performance
deterioration. For example, DCTCP [9] employs explicit
congestion notification technology to avoid packet losses
and thus reduces the number of TOs. In D3 [21], the senders
of delay-sensitive flows compute their expected send rates
and transmit them to switches. Each switch assigns proper
rate for each flow based on the collected rate requirements
to avoid traffic congestion and thus solve the TCP Incast
problem. PDQ [22] provides delay-aware transmission con-
trol by emulating preemptive scheduling mechanisms. pFa-
bric [23] is a novel transport protocol for data center
networks wherein switches provide priority-based schedul-
ing. Flows start at the line rate and throttle back only under
high and persistent packet losses. These new proposed
transport protocols can solve the TCP Incast problem. How-
ever, before they are widely deployed, it is better to design
a light-weight TCP modification mechanism that can be eas-
ily deployed and poses no impact on other kinds of applica-
tions, to solve the TCP Incast problem.

Third, employing mechanisms at other layers. Several
solutions have been proposed at the data link layer. Pha-
nishayee et al. proposed using Ethernet Flow Control to
solve the TCP Incast problem [2]. However, it cannot work
well if multiple switches exist between the senders and the
receiver due to head of blocking. Pan et al. suggest prevent-
ing packet losses by modifying quantized congestion notifi-
cation (QCN) [24], which is an Ethernet layer congestion
control mechanism designed for data center ethernet. Simu-
lation results show that QCN proposed by IEEE 802.1 qau
group fails to solve TCP Incast problem. Thus, QCN is mod-
ified by increasing the sampling frequency at the congestion
point and making the link rate increase adaptively to the
number of flows at the reaction point. Zhang et al. proposed
fair QCN (FQCN) which modifies the congestion feedback
in QCN to improve the fairness of different flows along the
same single bottleneck. However, FQCN requires that the
switch monitors the packet arrival rate of each flow, which
incurs high overhead due to the large number of flows in
data centers. Besides, modifying QCN incurs overhead for
all the other applications except for that with TCP Incast
problem in data center networks since QCN works in the
link layer. At the application layer, Facebook [25] engineers
proposed limiting the number of outstanding requests to
alleviate Incast congestion.

3 ASSUMPTIONS AND NOTATIONS

3.1 Assumptions

3.1.1 TCP Incast Scenario

The bottleneck buffer employs the Drop Tail queue man-
agement scheme. Packets will not be dropped unless the

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 479



bottleneck buffer overflows. Besides, if the number of
senders is larger than the bottleneck buffer size in unit of
packets, then even if each sender transmits one packet,
the bottleneck buffer will be overwhelmed. Therefore,
we assume that the number of senders is smaller than the
buffer size.

3.1.2 TCP

Assume that the TCP version is NewReno, which is popular
in practice. The receiver sends one ACK for each received
packet and ACKs are not lost. The threshold of duplicate
ACKs to trigger FR phase is 3. Since the unabiding slow
start process imposes a negligible impact on TCP througput,
it is igonred in our modeling.

3.2 Notations

Before defining the notations, we first introduce a concept
called round. The first round starts from the beginning of a
congestion avoidance (CA) period and lasts one RTT. The
after round starts from the end of the last round and also
lasts one RTT. A CA period finishes with the next round
after some packets being dropped. If the dropped packets
are detected by the sender through three duplicate ACKs,
then a FR period will be entered, else if through a fired
retransmission timer, then a TO period occurs.

A scenario of TCP Incast is shown in Fig. 1. N senders
transmit data blocks to a single receiver. The bottleneck

bandwidth is C packets per second. The bottleneck buffer
size is B packets. Each packet has the same payload Sp

Bytes. Considering a CA period, let Wi be the window size
of a flow in round i whose duration is Ri. Qi denotes the
queue length of the bottleneck buffer at the end of round i.
The other key notations are summarized in Table 1 for the
sake of terseness.

4 GOODPUT MODEL WITHOUT AWND LIMITATION

The goodput of TCP NewReno [26] in the Incast environ-
ment without awnd limitation will be modeled in this sec-
tion. As aforementioned in Section 1, two types of TOs lead
to TCP goodput drop. We will first show them in Figs. 2
and 3 which are plotted based on the results of simulations
conducted on the ns-2 platform.

Fig. 2 shows the scenario where BTTO happens. Eight
senders transmit synchronized data blocks to the same
receiver. The figure plots the window evolution of two send-
ers among them. A pentagram plotted at ðt; 20Þ represents

Fig. 1. A scenario of TCP Incast, where multiple senders concurrently
transmit data blocks to a single receiver.

TABLE 1
Key Notations in Our Model

Not. Description

Wm Window size when some of the N flows begin to drop
packets

Wn Expected maximum window size
Wl Advertised window size of the receiver
D Propagation delay between each sender and the receiver
TC
N

Expected duration of a CA period with totalN flows

Y C
N

Expected number of packets successfully transmitted in a
CA period

Nm The number of flows which lost packets when window
size isWm

Y B The block size in unit of packets

Y F
N

Expected number of successfully sent packets in a CA
+ FR period

TF
N

Expected duration of a CA + FR period
N� Critical point between BHTO dominating goodput and

BTTO doing
G Goodput of the receiver without advertised window lim-

itation
Gl Goodput with window limitation

Fig. 2. The scenario where BTTO happens. N ¼ 8 senders concurrently
transmit packets to the same receiver. The packet size Sp ¼ 1KB, bottle-
neck bandwidth C ¼ 1 Gbps = 12:5pkts, buffer B ¼ 64 packets, synchro-
nized block Sb ¼ 1; 024KB. The advertised window of the receiver is set
to 1; 000 packets. We can see that as long as one flow enters a TO
period at the end of a block, the other flow will also undergo a TO period.

Fig. 3. The scenario where BHTO happens. The main parameters of this
scenario are: N ¼ 32; Sp ¼ 1KB;B ¼ 64; Sb ¼ 256KB;C ¼ 12:5 pkts.
The window evolutions of sender 1, 5, 6 are plotted to illustrate BHTO.

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



that a block finishes at time t. The big X represents that a
retransmission timer is fired. The awnd of the receiver is set
to 1;000 packets, which is large enough that it has no impact
on the sendwindow evolution. We can see that at about time
t ¼ 0:79 s, sender 1 finishes Block 10 and then the window
size does not vary. While sender 2 suffers a TO period before
finishing Block 10 during time about ð0:79 � 0:98Þ s. By
observing the congestion window evolution of flow 2, we
found that the penultimate packet of Block 10 of sender 2
was dropped. Although the last packet of Block 10 was suc-
cessfully transmitted, only one duplicate ACK was received
by sender 2. What’s more, according to the Incast communi-
cation pattern, the packets of Block 11 will not be delivered
to the transport layer from the application layer until all
senders finish Block 10. Therefore, sender 2 has to wait until
the retransmission timer fires at about 0:98 s. A timeout event
happens. Then sender 2 retransmits the dropped packet, and
then Block 10 is finished. With respect to sender 1, although
it finishes Block 10 much earlier than sender 2, it cannot get
the data of Block 11 immediately since sender 2 does not fin-
ish Block 10 yet. Hence, it also waits until sender 2 finishes
Block 10. The bandwidth is wasted during 0:79 � 0:98 s,
which deteriorates the goodput.While at about 1:25 s, sender
1 delays finishing Block 14 due to the same kind of timeout
and therefore also degrades goodput.

Fig. 3 illustrates the situation where BHTO happens.
N ¼ 32 flows concurrently send packets to the same
receiver. The advertised window size of the receiver is also
set to 1;000 packets. We plot three of the 32 flows to illus-
trate the behavior of BHTO. The pentagram represents that
a block is finished. At time 0:325 s, all the senders begin to
transmit Block 2. We can see that sender 6 finishes Block 2
at about 0:35s. Unfortunately, sender 1 and 5 do not receive
any ACKs and thus their windows do not change. Through
tracking the simulation data, we can find that both sender 1
and 5 lose all packets sent in their first windows at the
beginning of Block 2 and thus no new and duplicate ACKs
are fed back to the sender. Therefore, their retransmission
timers fire at about time 0:52 s. And at 0:56 s, both of them
finish Block 2. It can be inferred that all the other flows also
finish Block 2 before 0:56 s since the transmission of Block 3
begins at this moment. With respect to Block 3, all the three
senders luckily finish their third Block soon without under-
going TO periods. However, they do not continue to trans-
mit Block 4 at once, which implies that some other flows
delay finishing their third Blocks.

Through investigating numerous simulation data, we
found that BTTO dominates TCP goodput when N is small
while BHTO does when N is large. Let N�ð1 � N� � NÞ
denote the critical value between these two situations. We
will first model the goodput when N is small where BTTO is
themain factor of degrading TCPperformance. Subsequently,
N� will be computed and the goodput whenN is large where
BHTO largely deteriorates TCP goodputwill bemodeled.

4.1 Goodput As N < N�

4.1.1 Dynamics of Queue Length

During the ith round of a CA period, N senders transmit
data to one receiver. Then NWi packets will be injected into
the bottleneck buffer, and CRi packets will be served by the

bottleneck link. Thus, we can obtain Qi, the number of pack-
ets in the queue at the end of the ith round, as follows:

Qi ¼ minfðQi�1 þN �Wi � C �RiÞþ; Bg; (1)

ð�Þþ equals ð�Þ if ð�Þ > 0, else equals 0.

4.1.2 Relationship between RTT and Queue Length

Assume that the queue employs First-Come-First-Served
model and the propagation delay between each source to
the destination is a constant value D. As a rough approxi-
mation, Ri is the sum of the propagation delay and the
queuing delay as follows:

Ri ¼ E DþQi�1 þ f

C

� �
; (2)

where f is a stochastic variable which models the possible

longer queuing delay of the transmitted packets than Qi�1
C in

round i. Clearly, the first packet transmitted in round i will

undergo Qi�1
C queuing delay since the queue length at the

end of round ði� 1Þ is Qi�1. However, the afterwards pack-
ets will suffer longer queuing delay if the rate of the arrival
traffic is larger than the departure rate.

4.1.3 Number of Packets Successfully Transmitted in a

CA Period

Fig. 4 illustrates the congestion window evolution in a CA
period. The window size increases by 1 in each round
iði > 1Þ until some packets are dropped at round n. Rounds
ð1 � nþ 1Þ form a CA period. Let Wn be the maximum con-
gestion window size in a CA period. dn packets will be lost
when the window size becomes Wn. In the last round, bn

packets will be transmitted. Therefore, the number of suc-
cessfully transmitted packets Yn in a CA period is

Yn ¼ Sn þ bn � dn; (3)

where Sn ¼ PWn
2
j¼0ðWn

2 þ jÞ ¼ 3
8 ðWnÞ2 þ 3

4Wn.
Now compute the maximum window size Wn. Accord-

ing to Eqs. (1) and (2), we can infer

Qi ¼ minfðNWi � CD� fÞþ; Bg: (4)

In a CA phase, the difference between Qi and Qi�1 is
about N according to Eq. (4). The first packet in round i suf-

fers Qi�1
C delay, and the last packet in round i suffers

Qi
C ¼ Qi�1þN

C delay. Since the arrival rate and departure rate

Fig. 4. Congestion window evolution during a CA period.

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 481



are both constant, we can infer that EðfÞ ¼ N
2 . If Qi > B, i.e.,

Wi >
CDþBþN

2
N , some packets will be dropped. Let

Wm ¼ CDþB

N
þ 1

2

� �
þ 1: (5)

In the mth round, approximately Nm ¼ NWm� bCDþ
N
2 þBc packets will be dropped. Obviously, 1 � Nm � N .

Since the windows evolutions of all the flows are synchro-
nized when N is small, their packets will be fairly dropped.
So we can infer that about Nm flows will lose one packet
each. While the window of the other ðN �NmÞ flows will
increase toWm þ 1. Assume that each of the ðN �NmÞ flows
will lose one packet when their window sizes are Wm þ 1,
we can get the maximum window size in a CA period

Wn ¼ Wm; with probability Nm
N ;

Wm þ 1; with probability ð1� Nm
N Þ:

�
(6)

Hence, the expected number of packets successfully
transmitted by one ofN flows in a CA period, Y C

N , is

Y C
N ¼ Nm

N
Ym þ 1�Nm

N

� �
Ymþ1

� �
: (7)

Assume bi uniformly distributes between 1 and Wi, then

its expectation EðbiÞ ¼ Wi
2 . Based on the analysis above,

we have dm ¼ dmþ1 ¼ 1. Hence, from Eqs. (3) and (7), we
can obtain

Y C
N ¼ E

��
Nm

N
ðSm þ bm � dmÞ

þ
�
1�Nm

N

�
ðSmþ1 þ bmþ1 � dmþ1Þ

��

¼
�
3

8
ðWmÞ2 þ 2Wm þ 5

8
�
�
3

4
Wm þ 13

8

�
Nm

N

�
:

(8)

4.1.4 Duration of a CA Period

Assume Qi�1 > 0ð1 � i � nÞ, namely, there are backlog in
the buffer during CA phases. Combining Eqs. (2) and (4), we

have Ri ¼ NWi�1
C . Since W1 ¼ Wn

2 , according to the window

regulation law in slow start phases, the window size W0

before the first round should be Wn
4 . Thus, the duration Tn of a

CA periodwith themaximumwindow sizeWn is as follows:

Tn ¼
Xnþ1

i¼1

Ri ¼ N

C

� 3

8
ðWnÞ2 þWn

�
: (9)

Similar to the analysis of computing the number of the
successfully transmitted packets Y C

N in a CA period, the

expectation of the duration TC
N of a CA period is

TC
N ¼ Nm

N
Tm þ

�
1�Nm

N

�
Tmþ1

¼ N

C

�
3

8
ðWmÞ2 þ 7

4
Wm þ 11

8
�
�
3

4
Wm þ 11

8

�
Nm

N

�
:

(10)

4.1.5 Probability of Block Tail Timeout

Fig. 5 illustrates a timeout event which happens at the tail of
blocks. As long as any one of the last three packets in a block
is lost, a timeout event will appear due to inadequate ACKs
to trigger FR. As shown in Fig. 5, the third packet from the
end of Block h is lost, then even if the last two packets of
Block h are successfully transmitted, the sender can receive
only two duplicate ACKs, which insufficiently triggers a FR
procedure. Then, when the retransmission timer fires, a TO
event occurs. We refer to this type of TO as BTTO. Next, the
probability of this event occurrence is deduced.

The number of packets successfully transmitted by a flow
during a CA period is Y C

N . The number of packets that a

block contains, denoted by Y B, is Y B ¼ dSbSpe, where Sb; Sp

are the sizes of a block and a packet, respectively. If a TO
period appears after k CA periods, then at least one lost
packet in the kth CA period is one of the last three packets
in a block, namely

kY C
N � a ¼ hY B � b; k and h are integers; (11)

where a, a stochastic variable, is the number of packets suc-
cessfully transmitted after a lost packet in the kth CA
period. If a packet is dropped in round n, then a ¼ Wn � 1.
Based on the model of the maximum window size Wn

defined in Eq. (6), we have

a ¼ Wm � 1; with probability Nm
N ;

Wmþ1 � 1 ¼ Wm; with probability
	
1� Nm

N



:

�
(12)

If ðkY C
N � aÞ is just one of the last three packets in the hth

Block, then a TO period will appear. hY B � bðb 2 f0; 1; 2gÞ
models one of the last three packet in the hth Block.

Denote yðxÞ ¼ minfkjkY C
N � hY B ¼ xg. For a specific a

value and a flow f , the number of CA periods between two
successive TO periods is

kfa ¼ minfyðaÞ; yða� 1Þ; yða� 2Þg: (13)

Now considerN flows. If at least one of theN flows enters
a BTTO period, the other flows will also wait for a period
which almost equals the BTTO period even if they have suc-
cessfully transmitted Block h (Fig. 2). This is because they
cannot get the next block data from the application layer.
Therefore, the probability of the BTTO period of a flow is the
maximumprobability of BTTO of theN flows.

Fig. 5. The scenario where a BTTO happens.

482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



Let kmin be the number of CA periods between two suc-
cessive TO periods when there are totalN flows. Define

a1 ¼ Wm � 1; if kfWm�1 < kfWm
;

Wm; else;

�
(14)

and fa2g ¼ fWm � 1;Wmg � fa1g, then we have

kmin ¼ kfa1 ; with probability 1� ðPr½a ¼ a2	ÞN;
kfa2 ; with probability ðPr½a ¼ a2	ÞN:

(
(15)

Thus, the expectation of kmin is

EðkminÞ ¼ kfa1ð1� Pr½a ¼ a2	ÞN þ kfa2Pr½a ¼ a2	N: (16)

Hence, the probability of entering a TO period from a CA
period is PO ¼ 1

EðkminÞ.
Now compute the duration of a TO period TO. A TO

period possibly contains several timeouts and ends with a
successfully retransmitted packet. In our model, the win-
dow evolution of all the flows can be assumed to be syn-
chronized when N is small, and the packets will only be
dropped when the bottleneck buffer overflows, so the
retransmitted packet after the first timeout in a TO period
will be successfully transmitted if N < B since the windows
of all the flows start from 1 after a timeout. Let T0 denote the
duration of the first timeout duration, which usually equals
RTOmin since the RTT of data center networks is quite
small. The duration of a TO period equals the first timeout

duration, namely, TO ¼ T0.

4.1.6 Goodput

When N < N�, at the end of each CA period, a TO period

happens with the probability PO. Thus, TCP goodput G1 as
N < N� is calculated as follows:

G1 ¼ N
Y C
N

TC
N þ POTO

Sp

¼ NSpb38W 2
m þ 2Wm þ 5

8 � ð34Wm þ 13
8 ÞNm

N c
N
C ð38W 2

m þ 7
4Wm þ 11

8 � ð34Wm þ 11
8 ÞNm

N Þ þ POT0

:

(17)

Remarks. If there are only CA periods, then according to
the expression of Y C

N and TC
N , TCP goodput of all the N

senders approximately equals C no matter what values

N;B; Sb take. Therefore, the probability of TO periods, PO,

is the main factor of degrading goodput. PO is decided by
whether the lost packet is one of the last three packets in a
block, which has negative correlation to the Least Common

Multiple of Y B and Y C
N , i.e., LCMðY B; Y C

N Þ. Thereby, larger
block size Y B decreases PO and thus improves goodput G1.

4.2 Goodput As N > N�

4.2.1 Calculation of N�

By observing simulation results, we found that when N
becomes relatively large, most TO periods happen at the
beginning of blocks. While few TO periods happen in the
subsequent rounds. This is because some flows will have
larger window sizes at the end of current block if the other

flows finish their blocks earlier. Besides, each flow injects all
the packets into networks according to its window size at a
quite short interval at the start of the next block. If these
packets cannot be accommodated by the buffer, some of
them will be dropped. A unlucky flow, which unfortunately
loses its whole window, will enter a TO period. While in the
subsequent rounds, the congestion windows are regulated
by CA procedures. Only one packet is transmitted after an
ACK is received. Hence, there are less traffic burst. All the
flows lose packet more fairly than that at the beginning of a
data block transmission. And the flows will timely respond
to packet droppings and thus few TO events appear due to
full window losses. We refer to the TO periods that occur at
the start of blocks as Block head TimeOut.

In reality, the numbers of the two types of TO periods,
i.e., BTTO and BHTO, per data block vary with different
number of senders N . Next the critical point N� is com-
puted. If N� senders transmit data to the same client, then
on average one flow will suffer a BHTO period in each
block. When N < N�, BTTOs are dominative, while when
N 
 N�, BHTOs are significant.

To determine whether a flow enters a TO period at the
beginning of Block b, we first compute the number of lost
packets Db at the first round of its transmission. Let Ab be
the expected summation of the first windows of all the flows
at the start of Block b. If all the windows of the N flows vary
synchronously, then the windows of all the flows uniformly

distribute between Wn
2 and Wn. While the system can accom-

modate about NWn packets. Hence, in theory few packets
will be lost at the start of Block b. However, simulation
results tell that when N becomes large, the asynchronism of
the windows evolutions cannot be ignored. As stated in
Section 4.1.3, Nm flows lose packets when their congestion
window sizes equal to Wm while the window of the other
ðN �NmÞ flows continue to increase. Hence, approximate
ðN �NmÞ flows will finish transmitting Block ðb� 1Þ earlier
than the other Nm flows. Then the Nm flows will compete
for the bandwidth of the bottleneck link to transmit their
remaining ðb� 1Þth Blocks. Therefore, at the start of Block b,

the windows of the ðN �NmÞ flows take values between Wm
2

and Wm, while the windows of the other Nm flows uni-

formly distribute between WNm
m
2 andWNm

m . Let

WNm
m ¼ bCDþB

Nm
þ 1

2c þ 1; Nm > 0;
Wm; Nm ¼ 0:

�
(18)

Hence, we can obtain that

Ab ¼ ðN �NmÞ � 3

4
Wm þNm � 3

4
WNm

m : (19)

The number of dropped packets Db at the beginning of
Block b is the difference between the arrival and the summa-
tion of departure plus the backlog in the buffer, namely

Db ¼ Ab � ðtC þBÞ; 0 < h < 1; (20)

where t is the maximum time spent by the senders injecting

the packets in their first windows. Since WNm
m 
 Wm, and

the capacity of the link between each sender and the inter-
mediate switch is C packets, the maximum time taken by

the senders is t ¼ WNm
m
C .

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 483



Next let us compute the number of flows suffering a TO
at the start of Block b. Assume that the arrival rate to the bot-
tleneck buffer, denoted by r, is constant. As shown in Fig. 6,
if all the flows totally spend time tðAbÞ1 injecting their first
windows to the network, then during time tðI1ÞðtðI1Þ <
tðAbÞÞ, no packets will be dropped since I1 ¼ BþO1, where
O1 is the number of packets served by the bottleneck link
during tðI1Þ. However, some packets could be lost if the
arrival rate is larger than the capacity of the link during
tðI2Þ. The probability Pt that a flow starts during tðI2Þ is

Pt ¼ tðI2Þ
tðAbÞ ¼

rtðI2Þ
rtðAbÞ ¼

I2
Ab

:

Therefore, the expected number of flows Nt which starts
during tðI2Þ is

Nt ¼ N � Pt ¼ N � I2
Ab

: (21)

All the lost packets Db are dropped during tðI2Þ. Thus,
the packet loss probability Pp is Pp ¼ Db

I2
. Then the probabil-

ity Pw that all the packets of a windowW are dropped is

Pw ¼ ðPpÞW ¼
�Db

I2

�W

: (22)

Since the link capacity is constant, the number of
departure packets during tðI1Þ is O1 ¼ tC � I1

Ab
. Therefore,

we can obtain that I1 ¼ Bþ tC � I1
Ab
. Clearly Ab ¼ I1 þ I2,

Therefore,

I2 ¼ Ab � BAb

Ab � tC
: (23)

Combining Eqs. (21)-(23), we can obtain that the expected
number of flows entering TO period after the first round is

NO ¼ Nt � ðPpÞW ¼ N 1� B

Ab � tC

� �
� Db

Ab � BAb
Ab�tC

0
@

1
AW

;

hereW ¼ ð1� Nm
N Þ � 3

4Wm þ Nm
N � 3

4W
Nm
m is the expected first

window size of each flow.
The minimum N , which enables NO ¼ 1, isN�.

4.2.2 Goodput

When N ¼ N�, on average one flow will enter a TO period
at the beginning of each block. And when N > N�, we can
infer that on average ðN� � 1Þ lucky flows can transmit a
block without undergoing any TOs, and the other
ðN �N� þ 1Þ flows will enter a TO period. Assume that the
ðN� � 1Þ lucky flows can finish their blocks during this TO
period. Then, after the TO period, the other ðN �N� þ 1Þ
flows compete for the bandwidth to transmit packets. All of
their windows start from 1, and they transmit a packet only
after receiving an ACK. They can relatively fairly use the
bandwidth of the bottleneck link without full window
losses. But their maximum window sizes are very small
when N is large, the FR periods are so frequent that the cor-
responding time cannot be ignored.

Let TF denote a CA period plus the subsequent FR
period. Similar to the analysis as N < N�, we need to com-
pute the number of packets successfully transmitted in a TF

period by one of the ðN �N� þ 1Þ unlucky flows, Y F
N�N�þ1,

and the duration of a TF period, TF
N�N�þ1. NewReno will

enter into FR after receiving three duplicate ACKs. If the
current window is W , d packets are dropped, then the con-

gestion window is ðW2 þW � dÞ since each duplicate ACK

increases the window by 1 [11]. If d < W
2 , then ðW2 � dÞ pack-

ets will be transmitted. According to the analysis of comput-

ing Y C
N in Section 4.1.3, when the window size reachesWn, a

flow will drop one packet, i.e., d ¼ 1. Hence, in FR, a flow

will send ðWn
2 � 1Þ packets. In our model, we only consider

N � B, which implies that Wn
2 > 1. Assume the packets in

the first cycle of a FR period, which lasts about D, are suc-
cessfully sent, then we can get

Y F
ðN�N�þ1Þ ¼ Y C

ðN�N�þ1Þ þ
Wn

2
� d (24)

TF
ðN�N�þ1Þ ¼ TC

ðN�N�þ1Þ þD: (25)

The time that one of the ðN �N� þ 1Þ unlucky flows
spends transmitting a block determines when the next block
can be transmitted. Since the ðN� � 1Þ flows can finish their
blocks in a TO period and the other flows will not undergo
more TOs after the first round, the time that a unlucky flow
needs to finish one block is

TB ¼ T0 þ Y B

Y F
ðN�N�þ1Þ

TF
ðN�N�þ1Þ: (26)

Therefore, we can get the goodput G2 asN 
 N�

G2 ¼ N � Y B

TB � Sp ¼
NSpY

BY F
ðN�N�þ1Þ

T0Y
F
ðN�N�þ1ÞþY BTF

ðN�N�þ1Þ
: (27)

Combining Eqs. (17) and (27), we can obtain that the TCP
goodput of N senders concurrently transmitting data blocks
to a receiver is

G ¼
NSp

�
3
8W

2
mþ2Wmþ5

8�ð34Wmþ13
8 Þ

Nm
N

�
N
C

	
3
8W

2
mþ7

4Wmþ11
8�ð34Wmþ11

8 Þ
Nm
N



þPOT0

; N < N�;

NSpY
BY F

ðN�N�þ1Þ
T0Y

F
ðN�N�þ1ÞþY BTF

ðN�N�þ1Þ
; N 
 N�:

8>><
>>:

Fig. 6. The behavior of the packets in the first windows of all the flows at
the beginning of Block b.

1. tðxÞ represents the time taken by transmitting x packets, i.e.,
tðxÞ ¼ x

r.

484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



4.3 Validation

In this section, we validate our model through simulations
on the ns-2 platform in scenarios with different buffer size
and different data block size, and discuss the impact of
some parameters upon TCP Incast goodput. The module for
TCP Incast is developed by Phanishayee et.al. in [2]. The
RTOmin is set to 0:2s.

4.3.1 Different Buffer Size B

Figs. 7, 8, and 9 show the normalized goodput of our
proposed model and simulation results with different
buffer size B. The title of the graph indicates the bottle-
neck link capacity C, the bottleneck buffer size B, the
synchronized data block Sb, the propagation delay D,
and the packet size Sp.

The model well characterizes the general goodput ten-
dency of TCP Incast, which indicates that the two types of
TOs, BTTO and BHTO, indeed are the essential causes of
the TCP Incast problem. Besides, we found that the critical
point N� is just the goodput collapse point. Specifically,
when N < N�, i.e., before goodput collapse, some model
results are not in conformity with the simulation data. The
reason is that the frequency of BTTO is quite sensitive to the
location of the lost packet since the lost packet must be one
of the last three packets in a block. Therefore, the imprecise
number of packets successfully transmitted in a CA period

Y C
N and locations of lost packets will both have negative

impact on the accuracy of the model. When N > N�, the
model results are almost the same as the simulation data
with different buffer size.

From the three simulation curves in Figs. 7, 8, and 9, we
can summarize three features. (1) Larger buffer size B
improves the whole goodput with different N . This fact can
be explained by our proposed model. Larger buffer size B

augments the maximum window size Wm ¼ bCDþB
N þ 1

2c þ 1.

Then the expected number of packets successfully transmit-

ted in a CA period, Y C
N , increases. When N < N�, the proba-

bility of a TO period has a negative correlation with

LCMðY C
N ; Y BÞ, hence the goodput has an ascendant trend as

B increases. When N > N�, large maximum window
size decreases the time taken by one of the ðN �N� þ 1Þ
unlucky flows transmitting a block, namely, TB ¼ T0þ

Y B

Y F
N�N�þ1

TF
N�N�þ1 becomes small. Thus,G2 increases. (2) Large

Bmakes the critical point N� shift right. Before goodput col-
lapse, that is, when the number of senders N is smaller than
the critical point N�, the goodput largely depends on BTTO,
while as N > N�, goodput is mainly determined by the fre-
quency of BHTO,whichwill severely decrease TCP goodput.
Larger buffer can makeN� shift right since it can cache more
packets. Therefore, larger B delays the onset of goodput col-
lapse. (3) After the critical pointN�, goodput becomes larger
as N increases. The goodput of a flow is quite low when N
equals N�. However, the goodput slowly increases as N
becomes larger. This can be explained using our model.

Transmitting a block spends time TB ¼ T0þ Y B

Y F
N�N�þ1

TF
N�N�þ1.

In our analytical model, a TO period lasts only one timeout,
namely, its duration equals T0. Hence, when N becomes
large, although the unlucky flows spendmore time transmit-
ting their blocks, the time taken by the TO period keeps

unchangeable. Thus, larger N increases TB a little. But the
increment is quite small compared with T0. Hence, goodput
slowly increases with larger number of senders N . In fact,
whenN becomes very large, packets will likely be lost in the
TO periods due to more severe bandwidth contention, that
is, a TO period will possibly take longer time than T0. In our
model, we do not take this longer TO into consideration, so
the analytical results slightly deviate from the simulation
data when N becomes quite large. The gap between the
model results and the simulation data is more obvious when
the buffer size is small, this is maybe because the probability
that longer timeout periods happen is larger when the buffer
size is small.

4.3.2 Different Synchronized Data Block Sb

Figs. 10, 11, and 12 plot the proposed model and simula-
tion results with different block size Sb. We can see that
the goodput becomes larger when the block size
increases. But large block size has little impact on the
onset of goodput collapse. According to our model, block
size Sb is irrelative to the maximum window size. There-
fore, the goodput of a CA period does not vary. WhenFig. 8. Normalized goodput with 128 KB buffer.

Fig. 7. Normalized goodput with 64 KB buffer. Fig. 9. Normalized goodput with 256 KB buffer.

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 485



N < N�, the probability of a TO period has a negative cor-

relation with LCMðY C
N ; Y BÞ. Hence, when Sb becomes

large, the probability that a TO period happens will have
a decline tendency and consequently the goodput will
increase. When N > N�, since on average one TO happens
in each block. Thereby, when the block size becomes
large, the ratio of the time wasted by a TO period to the
time spent by unlucky flows transmitting packets
becomes smaller. As a result, the goodput increases.

4.3.3 Parameter Analysis

N� is a quite important point since it is the critical point of
the goodput collapse. We conducted a series of simulations
with different N;B;C, and obtained the value of N� using
our analytical model. The results are presented in Figs. 13
and 14. We can see that the critical point is mainly related to
B, while the bandwidth of the bottleneck link has little
impact on it. This is because the window of a flow becomes
larger as C increases with a specificN , the number of served
packets also increases during the first round of a block.
These two impacts just counteract and thus larger C does
not enlarge the probability of BHTO. Therefore, larger C
does not delay the onset of goodput collapse. With respect
to the buffer size, larger buffer size can temporarily accom-
modate more packets to prevent them from being dropped.
Hence, larger B can delay the onset of goodput collapse.
However, larger buffer size will increase the end-to-end
delay and is not economical. Thus, the commodity switches
in data centers usually employ shallow buffer.

5 GOODPUT WITH AWND LIMITATION

The model above is based on the premise that the window
limitation of the receiver is so large that its impact can be
neglected. In this section, the window limitation Wl will be
taken into account.

5.1 Model

5.1.1 Wl < Wm

All the windows stop increasing after reaching Wl if
Wl < Wm. Based on our analysis, no packets will be dropped.
Therefore, all the flows keep transmitting data at the rate of
Wl
Rl
. Since they are totally synchronous, all the flowswill finish

transmitting a block almost at the same time. No senders
need to wait for other sluggish senders. Thus, the goodput
whenwindow limitationWl is smaller thanWm is

Gl ¼ NSp
Wl

Rl
: (28)

In Eq. (4), the dynamics of the queue system is modeled
as Qi ¼ minfðNWi � CD� fÞþ; Bg. The window limitation

Wl < Wm indicates that Qi < B. Thus Qi ¼ ðNWi � CD� fÞþ.
Since f describes the difference between Qi�1 and Qi, while
Wi�1 ¼ Wi ¼ Wl, hence Qi�1 ¼ Qi and further f ¼ 0. Thus,

Qi ¼ ðNWi � CDÞþ. From Eq. (2), we can get that Rl ¼ NWl
C if

NWl � CD > 0, else Rl ¼ D. Finally, we can obtain the
goodput whenWl < Wm as follows:

Gl ¼
NSpWl

D ; Wl � CD
N ;

CSp;
CD
N < Wl < Wm:

�
(29)

5.1.2 Wl ¼ Wm

When the windows of N flows increase to Wm, the win-

dows of Nm flows will drop to Wm
2 due to one lost packet

based on the analysis in Section 4.1.3, and the other
ðN �NmÞ flows will keep Wm until the windows of the
Nm flows increase to Wm again. Then another Nm flows

will drop to Wm
2 . Consequently, in a CA period, the

expected number of successfully transmitted packets is

Fig. 11. Normalized goodput with 128KB block.

Fig. 10. Normalized goodput with 64 KB block. Fig. 12. Normalized goodput with 512KB block.

Fig. 13. Critical pointN� with different B and C ¼ 1 Gbps.

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



Ŷ C ¼ Nm

N
Ym þ 1�Nm

N

� �
WmTm; (30)

where Ym and Tm is defined in Eqs. (3) and (9), respectively.
The expected duration of a CA period is T̂ C ¼ Tm. Thus,

the goodput with window limitation ðWl ¼ WmÞ is

Gl ¼ NSpŶ
C

T̂C
;Wl ¼ Wm: (31)

5.1.3 Wl 
 Wmþ1

When Wl is larger than Wm, the goodput of TCP Incast will
not be affected by the advertised window size, thus we have

Gl ¼ G; Wl 
 Wmþ1: (32)

5.2 Validation

Fig. 15 shows the impact of the advertised window of the
receiver on the goodput. We select a typical Wl ¼ 10,
According to Eqs. (29)-(32), we get that

1) As N ¼ 1;Wl <
CD
1 , hence, Gl ¼ NSpWl

D .
2) As N 2 ½2; 8	, CDN < Wl < Wm, hence Gl ¼ CSp.

3) As N ¼ 9,Wl ¼ W 9
m, hence Gl ¼ NSpŶ

C

T̂C .

4) As N > 9,Wl > Wm, hence Gl ¼ G.
The results shown in Fig. 15 validate that our model is

accurate, and the advertised window Wl can directly affect

the goodput if there are Ni flows as well asWl � WNi
m .

Remarks. From Eq. (29), we can infer that if the advertised
window size is larger than CD

N and smaller than Wm, then
the maximum aggregate throughput can be achieved. The
simulation results corroborate the conclusion. Besides,
ICTCP [8] solves TCP Incast problem by adjusting awnd to a
proper value.

6 SOLVING TCP INCAST PROBLEM USING

PRIORITY

From the throughput model of the TCP Incast problem, we
can infer that BHTO and BTTO should be eliminated to avoid
the TCP Incast goodput collapse. Next, we will first present
our priority-based solution to the TCP Incast problem, PRIN.
Then the implementation of PRIN is described. At last,the
performance of PRIN is validated on a real testbed.

6.1 Details of PRIN

6.1.1 Avoiding BHTO

BHTO occurs at the start of each data block due to too large
accumulated initial congestion window size. Synchronously

sending a large amount of data at the same time will over-
whelm the small switch buffer and thus cause many packet
losses. To avoid BHTOs, the congestion window size of
each flow is reduced at the beginning of every data block.

Then how large the initial window size should be? From
Eqs. (5), (18), and (19), we can infer that the aggregated con-
gestion window size at the start of each data block is

Ab ¼ ðN �NmÞ � 3

4
Wm þNm � 3

4
WNm

m

� ðN �NmÞ � 3

4
Wm þNm � 3

4
Wm � N

Nm

� �

< 2N � 3

4
Wm:

(33)

Normally if N long-lived TCP flows, without limitations
at the application layer, compete for a bottleneck, the sum-

mation of their window sizes is approximate N � 3
4Wm.

Thus, the initial window of each flow should be multiplied

by 1
2. If the value is smaller than the slow start window size,

which equals 2 if delayed ACK is enabled, otherwise 1, the
slow start window size is used as the initial window.

6.1.2 Preventing BTTO

BTTO occurs if at least one of the last three packets is lost at
the tail of data blocks. In this case, senders cannot receive
enough duplicate ACKs to trigger the fast retransmission
period and thus have to retransmit the lost packets after the
retransmission timer fires. To address this problem, we can
either retransmit the lost packets in advance or prevent the
last three packets from dropping. In the former method, it is
hard to determine a proper duration before retransmitting
the packets. A small value possibly incurs many unneces-
sary retransmissions, while a large value causes much band-
width wastage. Thus, in PRIN, we use a higher priority to
ensure the successful transmission of the last three packets.
Three packets are set to higher priority since generally three
duplicated ACKs are needed to trigger the TCP FR/FR pro-
cedure [27].

6.2 Implementation

Our algorithm is implemented in Linux kernel with version
2.6.18. The flags in the socket interface between the applica-
tions and TCP is used as an on-off switch to enable or disable
our algorithm. To ensure that TCP can work normally when
our modification is disabled, TCP header is not modified
and no new TCP options are added. The implementation of

Fig. 14. Critical pointN� with different B and C ¼ 10Gbps. Fig. 15. Normalized goodput with window limitationWl ¼ 10.

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 487



PRIN has a slight change to TCP kernel. The patch of our
algorithm only contains decades of lines of codes.

The implementation contains three parts: notifying data
block boundaries, reducing the initial congestion window at
the start of each block and configuring priority to the last
three packets at the end of every block.

6.2.1 Notifying Block Boundary

Applications can use the parameter flags of the socket API,
i.e., flags in function ssize_t send (int s, const void* buf, size_t
len, int flags), to notify TCP layer the block boundary. The
type of flags is signed integer, which has 31 bits to be used.
Until now, the maximum used flags is 0x800 (MSG_MORE
since Linux kernel 2.4.4) which tells TCP that the applica-
tion has more data to send. Hence, we use the 16th bit in
flags to notify TCP that the data in buf is the beginning of
the current data block. Besides, the 17th bit is used to notify
TCP layer to fragment packets in advance. Also, we use this
flag as the on-off switch mentioned above to indicate
whether our algorithm is enabled.

6.2.2 Reducing Congestion Window at the Start

of Blocks

If the 16th bit of the flags is set to 1, it can be inferred that a
new block starts, then the congestion window will be multi-
plied by 1

2. The lower bound of the initial window size is set
to 2 since the delayed ACK mechanism [28] is enabled in
default, which delays the first ACK for 40ms if no other
ACKs are to be sent.

6.2.3 Configuring Priority

IEEE 802.1p is employed in our implementation. Thus, we
first configure VLAN in our testbed to enable VLAN tag, then
the last three packets of a data block are set higher priority.

VLAN configuration. With VLAN tag, higher priority can
be set for the last three packets. For Linux hosts, the com-
mand vconfig add [interface-name] [vlan-id] can add a virtual
network interface card, which needs corresponding new IP
address and network mask. Packets sent from the virtual
interface card will have VLAN tag automatically. To config-
ure a VLAN at a switch, all the ports of it are configured to
be trunk mode. Trunk mode can support multiple VLANs
in one local area network. Fig. 16 shows the VLAN configu-
ration in our experiment. A VLAN named 100 is configured
by adding a virtual network interface eth0:100 to each PC.
N þ 1 black lines form default LAN with 192:168:0:x net-
work segment, while N þ 1 red dashed lines form VLAN
100 with 192:168:100:x network segment. Applications can

choose proper destination IP address to use default LAN or
VLAN 100.

TCP fragmentation. TCP provides stream-like data trans-
mission. The data in the socket buffer is cut into packets
whose size is not larger than maximum transmission unit
(MTU) before transmission. This fragmentation mechanism
leads to various packet sizes. Thus it’s difficult to precisely
estimate the start position of the last three packets. To
address this problem, our algorithm fragments data just
after data is delivered to the TCP layer from the application
layer. We fragment the data at the tail of each strip unit to
three packets by using TCP’s fragmentation function and
each packet size is smaller than MTU size which ensures
that TCP won’t fragment these packets again.

Setting priority. After the tail of one data block is frag-
mented, we set higher priority for the last three packets in
VLAN tag. In Linux kernel, struct sk_buff is the data
structure of data buffer, which has a variable priority.
We set sk_buff.priority to a higher priority 4 for the
last three packets. Besides, to avoid this value being over-
written by the TCP option SO_PRIORITY in the IP layer, we
modify the codes in the IP layer to choose the higher prior-
ity for the last three packets. To adapt the normal TCP con-
nection, this modification is also controlled by the on-off
switch of our mechanism.

7 EXPERIMENTAL EVALUATION OF PRIN

7.1 Experimental Configuration

Before conducting experiments, to make sure that the trans-
mission rate of TCP can reach 1 Gbps, two important param-
eters, net.ipv4.tcp_wmem and net.ipv4.tcp_rmem, in
the kernel should be enlarged. They are both a vector of three
integers:[min, default, max]. tcp_wmem are used by
TCP to regulate the send buffer size and tcp_rmem stands
for receive buffer size. We modify the default sizes of both
the send and the receive buffers to 128 KB. The maximum
sizes of them are set to 256 KB. Then we use Iperf [29] to test
the maximum throughput of a TCP connection between two
servers that connect to a HP ProCurve 2910al switch without
background traffic. The result can reach 950Mbps.

We deploy a testbed with Dell servers, a HP ProCurve
2910al Ethernet Switch and a Cisco Catalyst 2960G Ethernet
Gigabit Switch. Each PC is a DELL OptiPlex 360 desktop
with Intel 2.93 GHz dual-core CPU, 6 GB DRAM, and one
Intel corporation 82567LM-3 Gigabit Network Interface
Card. The operating system is CentOS 5.5.

First, the performance of our algorithm PRIN is com-
pared with TCP NewReno in a single-hop topology using
HP ProCurve 2910al Ethernet Switch. Then, we add a Cisco
2960G Ethernet switch and build a multiple hop topology to
evaluate the performance of our algorithm when the con-
gestion does not happen at the last hop.

The Incast application in our experiments transmits
100 data blocks in each scenario. All the results are the
average value.

7.2 Results

7.2.1 Single-Hop Topology

In this topology, PRIN is compared with TCP Newreno
without or with UDP background traffic.

Fig. 16. VLAN structure.

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



Without background traffic. Fig. 17 shows the normalized
goodput of PRIN and Newreno without background traf-
fic. We can see that with all the three different data block
sizes, TCP NewReno achieves quite small goodput when
the number of senders is larger than 3. Especially, when
the data block size is 64 KB, the goodput of TCP New-
Reno decreases from 90 percent to approximate 20 per-
cent of the bottleneck bandwidth as the number of
servers grows, while PRIN achieves high goodput which
is about 90 percent of the link bandwidth. Note that the
goodput is low when there is only one sender. This is
because one sender does not lead to the TCP Incast prob-
lem since the sender can transmit the next data block
right after it finishes the current one without waiting for
the other senders. Its congestion window will not exceed
the link capacity more than one packets. However, PRIN

multiplies the send window size by 1
2 at the beginning of

each data block. Therefore, the goodput is lower than
TCP Newreno. Since the number of senders in Incast
communication pattern is generally large, at least more
than 1, this special case can be ignored.

Fig. 18 plots the average number of timeouts during one
data block which is computed in the following way. First
the maximum number of timeouts of all the senders during
one data block is recorded, then we compute the average
value of all the 100 data blocks. Since TCP Incast goodput is
determined by the slowest sender, the number of TOs
shown in Fig. 18 can explain the goodput performance in
Fig. 17. In TCP NewReno, the senders suffer quite many
TOs per data block. The number reaches 1 as the number of
senders increases, which indicates that there is about one
TO period in every data block. While in PRIN, the average
number of TOs is close to zero. Thus, TCP NewReno suffers
goodput collapse while PRIN does not.

With background traffic. We add UDP background traffic
using Iperf with the rate of 100 Mbps. The normalized
goodput and the average number of TOs per data block
are shown in Figs. 19 and 21, respectively. Fig. 19 shows
that PRIN can still achieve about 80 percent utilization of
the link bandwidth, which is smaller than the highest
value 90 percent in Fig. 17 since UDP traffic takes 100
Mbps bandwidth. While the goodput of TCP NewReno
decreases from 70 � 80 percent to 20 � 40 percent as the
number of servers increases.

Similar to Fig. 18, the average number of TOs increases
as the number of senders grows. The difference is that
TCP NewReno has a little larger number of TOs on aver-
age than that without background traffic. The additional
TOs are caused by the bandwidth contention of the UDP
traffic. The average number of TOs per data block in
PRIN is still quite small, which indicates that PRIN can
work well with background traffic.

7.2.2 Multi-Hop topology

ICTCP only focuses on the scenario where the congestion
happens at the switch port that connects to the receiver [8].
We next evaluate whether our solution PRIN can work well
when the bottleneck is not the last hop as shown in Fig. 20.

Fig. 17. The normalized goodput of TCP with different data block sizes.

Fig. 18. Average number of TOs per data block with different block sizes.

Fig. 19. Normalized goodput of TCP with UDP background traffic.

Fig. 20. Multi-hop topology.

Fig. 21. Average number of TOs with UDP background traffic.

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 489



This kind of scenarios possibly happen in data centers, such
as the reducer fetches data from the mappers that do not
locate in the same rack as the reducer and one intermediate
link is congested.

Figs. 22 and 23 show the throughput and the number of
timeouts happened in a block with 100 Mbps UDP back-
ground traffic on the intermediate link, respectively. Similar
to the performance with background traffic in the single-
hop topology, PRIN still exhibits stable and high goodput,
which indicates that PRIN works well no matter where the
congestion link is located. The difference is that the maxi-
mum throughput is about 800 Mbps since 100 Mbps band-
width is taken by the background traffic.

8 CONCLUSIONS

In this paper, an analytical model is built to understand the
essential causes of the TCP Incast problem. The existing
investigations on the problem try to find an effective solu-
tion to address it. However, they either are hard to be
deployed, such as substituting TCP by new transport proto-
cols, or only can temporarily mitigate goodput drop, such
as reducing RTOmin.

To solve the TCP Incast problem substantially, the funda-
mental reasons should be first explored. we found that two
types of TOs, BTTO and BHTO, significantly degrade the
TCP goodput. The critical point between them is the onset of
TCP goodput collapse. BTTO caused by one of the last three
packets in a block being dropped happens when the number
of concurrent senders is small, while BHTO caused by the
first whole window loss happens when the number of con-
current senders becomes large. The proposed model is vali-
dated by comparing with simulation data. We found that
ourmodel well characterizes the goodput of TCP Incast.

Based on the insights provided by the proposed model,
we design a simple mechanism PRIN by leveraging the
IEEE 802.1p technology to eliminate BHTOs and BTTOs.
PRIN modifies TCP a little and poses no impact on the other
applications. The experimental results on a real testbed
demonstrate the effectiveness of our solution, which also
corroborates the goodput model.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the anonymous
reviewers for their constructive comments. This work was
supported in part by the National Basic Research Program
of China (973 Program) under Grant No. 2014CB347800 and

2012CB315803, and the National Natural Science Founda-
tion of China (NSFC) under Grant No. 61225011. Part of this
paper was presented at the IEEE INFOCOM, 2011 [1].

REFERENCES

[1] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP
incast in data center networks,” in Proc. IEEE Conf. Comput. Com-
mun., 2011, pp. 1377–1385.

[2] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis
of TCP throughput collapse in cluster-based storage systems,” in
Proc. 6th USENIX Conf. File Storage Technol., 2008, pp. 1–14.

[3] V. Vasudevan, A. Phanishayee,H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B.Mueller, “Safe and effective fine-
grained TCP retransmissions for datacenter communication,” in
Proc. ACMSIGCOMMConf. Data Commun., Aug. 2009, pp. 303–314.

[4] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter
networks,” in Proc. 1st ACM Workshop Res. Enterprise Netw., 2009,
pp. 73–82.

[5] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale
storage cluster: Delivering scalable high bandwidth storage,” in
Proc. ACM/IEEE Conf. Supercomput., 2004, pp. 53–62.

[6] M. Abd-El-Malek, W. Courtright, C. Cranor, G. R. Ganger, J.
Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R.
R. Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska, M.
Wachs, and J. J. Wylie, “Ursa minor: Versatile cluster-based
storage,” in Proc. 4th Conf. USENIX Conf. File Storage Technol.,
2005, p. 5.

[7] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
in Proc. 19th ACM Symp. Oper. Syst. Principles, 2003, pp. 29–43.

[8] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data center networks,” in Proc. ACM CoNEXT,
2010, pp. 1–12.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan,, “DCTCP: Efficient
packet transport for the commoditized data center,” in Proc. ACM
SIGCOMM Conf., Aug. 2010, pp. 1–12.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in
Proc. ACM SIGCOMM Conf. Appl., Technol., Archit., Protocols Com-
put. Commun., Sep. 1998, pp. 303–314.

[11] N. Parvez, A. Mahanti, and C. Williamson, “An analytic through-
put model for TCP NewReno,” IEEE/ACM Trans. Netw., vol. 18,
no. 2, pp. 448–461, Apr. 2010.

[12] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of
TCP/IP with stationary random losses,” in Proc. Conf. Appl., Tech-
nol., Archit., Protocols Comput. Commun., Aug. 2000, pp. 231–242.

[13] M. Goyal, R. Guerin, and R. Rajan, “Predicting TCP throughput
from non-invasive network sampling,” in Proc. IEEE Conf. Comput.
Commun., Mar. 2002, pp. 180–189.

[14] A. Kumar, “Comparative performance analysis of versions of TCP
in a local network with a lossy link,” IEEE/ACM Trans. Netw.,
vol. 6, no. 4, pp. 485–498, Aug. 1998.

[15] IEEE standards for local and metropolitan area networks: Virtual
bridged local area networks [Online]. Available: http://
standards.ieee.org/getieee802/download/802.1Q-1998.pdf, 1998.

Fig. 22. Normalized goodput in multi-hop topology. Fig. 23. Average number of TOs per data block in multi-hop topology.

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



[16] RFC 2474-definition of the differentiated services field (DS field)
in the IPv4 and IPv6 headers [Online]. Available: http://www.
faqs.org/rfcs/rfc2474.html, 1998.

[17] RFC 791-internet protocol specification [Online]. Available:
http://www.faqs.org/rfcs/rfc791.html, 1981.

[18] LAN QoS: Access switches get intelligent for high-stakes applica-
tions. (Mar. 2012) [Online]. Available: http://searchnetworking.
techtarget.com/tip/LAN-QoS-Access-switches-get-intelligent-
for-high-stakes-applications

[19] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster, “A Survey of
virtual LAN usage in campus networks,” IEEE Commun. Mag.,
vol. 49, no. 7, pp. 98–103, Jul. 2011.

[20] VXLAN: A framework for overlaying virtualized layer 2 networks
over layer 3 networks. (Aug. 2011) [Online]. Available: http://
tools.ietf.org/pdf/draft-mahalingam-dutt-dcops-vxlan-00.pdf

[21] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better
never than late: Meeting deadlines in datacenter networks,” in
Proc. ACM SIGCOMMConf., 2011, pp. 50–61.

[22] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2012, pp. 127–
138.

[23] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabha-
kar, and S. Shenker, “pFabric: Minimal near-optimal datacenter
transport,” in Proc. ACM SIGCOMMConf., 2013, pp. 435–446.

[24] R. Pan, B. Prabhakar, and A. Laxmikantha, “QCN: Quantized con-
gestion notification,” IEEE 802.1 Qau Presentation, 2007.

[25] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling memcache at facebook,” in Proc.
10th USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385–
398.

[26] S. Floyd, T. Henderson, and A. Gurtov, “The newreno modifica-
tion to TCP’s fast recovery algorithm,” in RFC 3782, Apr. 2004.

[27] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
in RFC 2581, Apr. 1999.

[28] R. Braden, “Requirements for internet hosts—Communication
layers,” in RFC 1122, Oct. 1989.

[29] Iperf [Online]. Available: http://iperf.sourceforge.net/

Jiao Zhang is currently an assistant professor in
the School of Information and Communication
Engineering at Beijing University of Posts and
Telecommunications (BUPT), Beijing, China. In
July 2014, she received her PhD degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, China. Her supervisor
is Prof. Fengyuan Ren. From August 2012 to
August 2013, she was a visiting student in the
networking group of ICSI, UC Berkeley. In July
2008, she obtained her Bachelor’s Degree from

the School of Computer Science and Technology from BUPT. Her
research interests include traffic management in data center networks,
routing in wireless sensor networks and future Internet architecture. Until
now, she has (co)-authored more than 10 international journal and con-
ference papers. She is a member of the IEEE.

Fengyuan Ren received the BA and MSc
degrees in automatic control and the PhD degree
in computer science from Northwestern Polytech-
nic University, China, in 1993, 1996, and 1999,
respectively. He is currently a professor in the
Department of Computer Science and Technol-
ogy at Tsinghua University, Beijing, China. From
2000 to 2001, he was at the Electronic Engineer-
ing Department of Tsinghua University as a post-
doctoral researcher. In Jan. 2002, he moved to
the Computer Science and Technology Depart-

ment of TsinghuaUniversity. His research interests include network traffic
management and control, control in/over computer networks, wireless
networks, and wireless sensor networks. He coauthored more than 80
international journal and conference papers. He has served as a technical
program committee member and local arrangement chair for various
IEEE and ACM international conferences. He is amember of the IEEE.

Li Tang graduated from Tsinghua University as
an undergraduate in 2009 and is currently work-
ing toward the master’s degree in the Department
of Computer Science and Technology, Tsinghua
University under the supervision of Prof. Fen-
gyuan Ren. His research interests include traffic
control in various networks, including wireless
networks, internet and data center networks.

Chuang Lin received the PhD degree in com-
puter science from Tsinghua University, China in
1994. He is a professor in the Department of
Computer Science and Technology at Tsinghua
University, Beijing, China. He is an honorary visit-
ing professor, University of Bradford, United
Kingdom. His current research interests include
computer networks, performance evaluation, net-
work security analysis, and Petri net theory and
its applications. He has published more than 300
papers in research journals and IEEE conference

proceedings in these areas and has published four books. He served as
the technical program vice chair, the 10th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS 2004); the general
chair, ACM SIGCOMM Asia Workshop 2005 and the 2010 IEEE Interna-
tional Workshop on Quality of Service (IWQoS 2010). He is an associate
editor of IEEE Transactions on Vehicular Technology and an area editor
of Computer Networks and the Journal of Parallel and Distributed Com-
puting. He is a senior member of the IEEE and the Chinese Delegate in
TC6 of IFIP.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: MODELING AND SOLVING TCP INCAST PROBLEM IN DATA CENTER NETWORKS 491



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


