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Abstract—Today’s data center switches usually employ on-chip shared memory; buffer management policy in them is essential to
ensure fair sharing of memory among all ports. Among various polices, Dynamic Threshold (DT) policy is widely used by switch
vendors. Meanwhile, in data centers, distributed applications such as MapReduce often introduce micro-burst traffic into network and
the packet dropping caused by micro-burst usually leads to serious performance degradation. When micro-burst traffic arrives at
switches, DT is unable to fully utilize the buffer to absorb it. Therefore, in this paper, we theoretically deduce the sufficient conditions for
packet dropping caused by micro-burst traffic, and quantitatively estimate the free buffer size when packets are dropped. The results
show that the free buffer size can be very large when the number of overloaded ports is small. What’s worse, to ensure fair sharing of
memory among output ports, packets from micro-burst traffic may be dropped even when the traffic size is much smaller than the buffer
size. In light of these results, we propose the Enhanced Dynamic Threshold (EDT) policy, which can alleviate packet dropping caused
by micro-burst traffic through fully utilizing the switch buffer and temporarily relaxing the fairness constraint. The simulation results
show that EDT can absorb more micro-burst traffic than DT.
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1 INTRODUCTION

M ICRO-BURST is a common traffic pattern in modern
data center networks, and has been brought to public

attention recently [1], [2], [3], [4], [5], [6], [7]. Generally,
it refers to bursty traffic with very small time-scale. It is
usually generated by distributed data center applications
and appears in the switch when packets from multiple
concurrent flows are destined to the same output port. For
example, in data centers deploying online services, the di-
vide and conquer computing paradigm is widely used, thus
large-scale concurrent flows may travel across networks.
Micro-burst appears in a switch port when results are aggre-
gated from multiple nodes [8], [9]. Packet dropping caused
by micro-burst traffic is usually unacceptable because micro-
burst traffic is comprised of several delay-sensitive short
flows, and the triggered timeouts always extend the flow
completion time, which lowers the user experience and thus
revenue [9], [10], [11], [12].

Packet dropping in a switch is directly related to its
buffer architecture and buffer management policy. Today
the majority of switches employ on-chip shared memory
to reduce latency by avoiding packet readings and writings
to and from external memory. The on-chip packet buffer is
dynamically shared across ports by statistical multiplexing
[10], [13], [14]. However, shared memory switches might
suffer from the fairness problem that few output ports could
occupy the majority of the shared buffer, starving other
output ports. In order to overcome the problem, many buffer
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management policies were proposed to restrict the queue
length on each output port [15], [16], [17], [18], [19], [20],
[21], [22].

Among various policies, Dynamic Threshold (DT) [17] has
been widely used by switch vendors [14], [23], [24], [25].
In this policy, the queue length is restricted by a dynamic
threshold shared by all output ports, which is proportional
to the current amount of free buffer space. However, because
DT needs to reserve a fraction of buffer so that the newly
overloaded ports won’t be starving, packets from micro-
burst traffic may be dropped even when there is free buffer
space in the switch.

In this paper, we theoretically deduce the sufficient con-
ditions for packet dropping caused by micro-burst traffic
and quantitatively estimate the corresponding free buffer
size in DT switches. The analysis result tells that the free
buffer size when packets are dropped is negatively corre-
lated to the number of overloaded ports. Particularly, when
the number of overloaded ports is small, the amount of
wasted buffer would be especially large. If these buffer
can be utilized by the overloaded ports, additional 50%
- 100% micro-burst traffic can be absorbed. Furthermore,
to ensure fair sharing of memory, the queue length of
each overloaded port is restricted by the same threshold.
As a result, when several ports are overloaded, packets
from micro-burst traffic will be dropped even through the
micro-burst traffic size is much smaller than the buffer size.
However, it is of great importance to avoid packet dropping
of micro-burst traffic in data center networks. On the other
hand, when more buffer is temporarily allocated to the ports
transmitting micro-bust traffic, there will be few effects on
the fairness in the long run because the time-scale of micro-
burst is quite short and the allocated buffer will be freed
immediately. Therefore, the fairness constraint of DT can be
relaxed to absorb micro-burst traffic.
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Fig. 1. Packet queueing architecture

In light of these, we propose the Enhanced Dynamic
Threshold (EDT) policy, which can absorb micro-burst traffic
as much as possible through fully utilizing the buffer and
temporarily relaxing the fairness constraint when micro-
burst traffic arrives at a port. EDT has three advantages: (1).
Buffer is fully used to absorb micro-burst traffic. (2). Buffer
is fairly shared among output ports transmitting long-lived
flows and micro-burst traffic, respectively. (3). EDT is simple
enough to be implemented in high-speed switches, as it is
comprised by several counters and timers.

We evaluate DT and EDT on ns-2 platform [26]. The
results show that in the worst case 50% of buffer remains
unused when micro-burst traffic causes packet dropping in
DT switches. In comparison, packets will not be dropped
until there is no free buffer space in EDT switches. As a
result, EDT switches can absorb ∼300% additional micro-
burst traffic. Moreover, although EDT temporarily relaxes
the fairness constraint, buffer is also fairly shared among
output ports in the long run. We also implement a software
prototype of EDT using DPDK [27]. The experiments on real
testbed show that with EDT the 99th flow completion time
for small flows can be reduced by 68.2% compared to that
with DT.

The rest of the paper is organized as follows: Section
2 presents background about packet queueing and related
work. In Section 3, we deduce the sufficient conditions for
packet dropping caused by micro-burst traffic and estimate
the corresponding free buffer size is estimated. Section 4
describes the design of EDT. Evaluation is presented in
Section 5. Finally, the paper concludes in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Packet Queueing Architecture
In a switch, packets need to be queued when multiple
packets from different input ports are destined to the same
output port. According to the location of queueing, there
mainly are three approaches. We describe each of them in
this part.
Input-queueing (IQ) (Fig.1a): With IQ, packets are queued
at input ports, waiting for access to switch fabric. IQ
switches suffer from the well-known head-of-line blocking
problem. Specifically, since only the packet at the head of
input queue is contending for switch fabric, packets behind
the head packet are blocked. For example, in Fig.1a, if packet
from input queue 1 is allowed to send to port 1, packets in
other input queues, which are destined to other output ports
(port 2, 3, 4, 5), are blocked. Many efforts have been made
to solve the problem [28], [29], [30], [31], [32], [33]. Despite
the head-of-line blocking problem, IQ switches has lower

complexity, as it only needs to have a speedup1of 1.
Output-queueing (OQ) (Fig.1b): With OQ, after arriving at
the switch, a packet is put to the queue at the destination
port. OQ switches are work-conserving as they can provide
100% throughput. However, in a switch with P ports, the
fabric needs to operate P times as fast as the line rate (i.e,
speedup is P ). Therefore, OQ switch is considered to be
complex and expensive.
Combined Input and Output Queueing (CIOQ) (Fig.1c):
CIOQ switches are designed to achieve larger throughput
with lower complexity. CIOQ switches have a speedup of S
(1 < S < P ) and packets need to be queued at both input
ports and output ports. With proper output scheduling algo-
rithms [34], [35], [36], [37], [38], [39], [40], CIOQ switches can
approach the throughput of OQ switches with low speedup
(e.g., 2 ∼ 5).

2.2 Shared Memory

Shared memory is a technique for building an OQ switch.
With shared memory switches, packets are written into a
centralized memory as they arrive from various input ports,
and linked to the appropriate output queues after output
port lookup. As a result, the centralized memory is shared
among all output queues. Shared memory switch is very
simple and low-cost [41], [42]. However, its capacity is
limited by the memory bandwidth, because a packet needs
to access memory twice (written into and read from) and all
switch ports may access the memory simultaneously.

In data centers, shared memory switches utilize fast
on-chip memory to increase the memory bandwidth and
achieve high line rate [14], [23]. Specifically, rather than us-
ing external memory, the memory is embedded into switch
ASIC. As the internal logic can be clocked much faster
than external memories [41], the memory bandwidth can
be significantly increased and high switch capacity can be
achieved (e.g., 10Gbps for a 64-port switch [14]). Therefore,
shared memory switches can be widely used in data centers
[10], [43], [44], [45].

2.3 Buffer Management Policies

To ensure fair sharing of memory across different ports, lots
of buffer management policies have been proposed in the lit-
erature. Generally, they can be divided into two categories:
non-preemptive policies and preemptive policies. For non-
preemptive policies [15], [16], [17], [18], [19], a packet will
not be dropped once it has entered into the buffer and
newly arrived packets will be dropped when the memory
is full. For preemptive policies [20], [21], [22], a packet in
the buffer can be overwritten by newly arrived packets if
the memory is full. Preemptive policies are proved to be
optimal. However, they are too difficult to be implemented
in the hardware. Among these policies, DT [17] is widely
used in commodity switches [14], [23], [45] because it is
both adaptive and easy to be implemented. Therefore, we
consider DT in this paper.

DT is a threshold-based non-preemptive buffer manage-
ment policy, in which the queue lengths of all ports are

1. The speedup of a switch is defined as the ratio of a switch’s internal
bandwidth to its line rate [34].
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Fig. 2. Queue length and threshold evolutions

constrained by a threshold. Packets are not allowed to enter
into the queue whenever the queue length exceeds or equals
to the threshold. The key idea of DT is that the threshold is
proportional to the current amount of unused buffer space.
More precisely, letQi(t) be the queue length of port i at time
t and B be the shared buffer size, then the threshold T (t)
can be given by

T (t) = α ·
(
B −

∑
i

Qi(t)

)
(1)

where α is a control parameter. DT reserves a fraction of
buffer all the time such that other ports won’t be starved.

To understand the mechanism of DT, consider the fol-
lowing scenario. Assume that the switch buffer is empty
and the k-th output port becomes overloaded at time t = 0,
then

∑
iQi(t) = Qk(t) when t = 0+. Let α = 2, then T (t) =

2 · (B −Qk(t)). At time t = 0, Qk(0) = 0 and T (0) = 2B,
thus Qk(0) < T (0). Packets are allowed to enter into the
buffer, and Qk(t) will increase until Qk(t) = T (t) = 2B/3,
as illustrated in Fig. 2. Once T = Qk, the port is not allowed
to occupy additional buffer and the queue length will not
increase any longer. The reserved buffer size in this case is
B/3.

2.4 Micro-burst in Data Centers
In data center networks, micro-burst has been studied re-
cently. Traces from ten data centers are examined in [3], and
authors find that traffic exhibits an ON/OFF pattern in the
order of milliseconds. [5] studies bursts in NIC at packet-
level. In [7], authors find that short-lived congestion caused
by micro-burst brings challenges to load balancing systems.
In multi-tenant datacenters, some algorithms are proposed
to achieve bandwidth guarantees [46] and fairness [47] with
bursty traffic. Several tools [4], [6] are developed to detect
micro-burst. However, none of them considered the buffer
management policy in switches.

3 ANALYSIS OF DYNAMIC THRESHOLD

In this part, we will analyze the DT policy following a
specific-to-general way, so that the analysis is clear and thus
readable. Specifically, we’ll first analyze the case when the
arriving rate of micro-burst traffic to any port is constant
and the same. Then, we’ll analyze the case when the arriving
rate of micro-burst traffic to each port can be different.
Finally, we extend the analysis to the most general case —
the arriving rate varies with time.

TABLE 1
Notations

Not. Description
Ri the arriving rate of traffic to i-th port
C link capacity
Qi(t) queue length of i-th port at time t
B total buffer size
T (t) threshold at time t
F (t) free buffer size at time t
di duration of micro-burst in i-th port
P the number of ports in the switch
f ′(x) the derivative of f(x)

For the convenience of expression, we give the following
names about the status of a switch output port.

1) Overloaded and Underloaded State: A port is in
overloaded state if and only if the arriving rate of
traffic to this port is larger than the port’s trans-
mitting rate. Otherwise, the port is in underloaded
state. More precisely, let the arriving rate of traffic
to the i-th output port be Ri. Let C denote the link
capacity. Then port i is overloaded if and only if
Ri > C.

2) Steady State: When a port is in the overloaded state,
it reaches steady state if and only if its queue length
is equal to the threshold and the queue length, as
well as the threshold, will not change for a while.
More precisely, port i reaches steady state at time t
if and only if T (t) = Qi(t) and T ′(t) = Q′i(t) = 02.

Consider a switch with P output ports and buffer sizeB.
At time t = 0, the queues of port 1, · · · , port M are empty,
and port (M + 1), · · · , port (M + N) have reached their
steady states3. At time t = 0+, micro-burst traffic arrives
at port 1, · · · , port M at the same time4, and these ports
become overloaded. Let Ri be the arriving rate of micro-
burst traffic to port i and di be the duration of micro-burst
traffic in port i. The free buffer size at time t is denoted by
F (t). These notions are summarized in TABLE 1 for the sake
of terseness.

3.1 Ri (i = 1, 2, · · · ,M) is constant and R1 = R2 =
· · · = RM = R

The evolutions of queue lengths and threshold in this case
have been analyzed in [17] in detail. However, for the
convenience of explaining the following cases, we’ll briefly
show the analysis.

At time t = 0+, as micro-burst traffic arrives at
port 1, · · · , port M , the unused buffer will be occu-
pied. Thus, the threshold will decrease, which makes
QM+1, · · · , QM+N decrease. The maximum decreasing rate
of queue length is C , when no packets are entering into the
queue and packets in the queue are transmitted at a rate of
C (the port transmitting rate). Therefore, there are two cases.

a). R 6 C
(
1 + 1+αN

αM

)
2. In this paper, we let f ′(x) denote the derivative of f(x).
3. M +N 6 P . Because some ports may be idle.
4. When several micro-bursts arrive at a port at the same time, we

can simply consider them as an aggregated micro-burst, whose arriving
rate is the sum of all separate micro-bursts.
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In this case, |T ′(0+)| 6 C . Therefore, at time t =
0+, QM+1, · · · , QM+N will decrease at the same rate as
that of threshold, as is illustrated in Fig. 3a. Meanwhile,
Q1, · · · , QM will increase at a rate of (R − C), until
Q1, · · · , QM hit the threshold at time t = t1. According to
[17], time t1 is given by

t1 =
αB

[1 + α(M +N)](R− C) (2)

Then packets are dropped since port 1, · · · , port M are not
allowed to acquire additional buffer. Therefore, the sufficient
condition for packet dropping in port i is

di > t1 (3)

According to [17],

T (t1) =
αB

1 + α(N +M)
(4)

Therefore, the free buffer size when packets are dropped is

F (t1) =
T (t1)

α
=

B

1 + α(N +M)
(5)

b). R > C
(
1 + 1+αN

αM

)
In this case, |T ′(0+)| > C. Therefore, at time t = 0+,

QM+1, · · · , QM+N will decrease at a rate of C , which is
lower than the decreasing rate of threshold, as is illustrated
in Fig. 3b. Meanwhile, Q1, · · · , QM will increase at a rate of
(R − C), until Q1, · · · , QM hit the threshold at time t = t2.
According to [17], time t2 is given by

t2 =
αB

(1 + αN)[(1 + αM)(R− C)− αNC] (6)

Then packets are dropped since the increasing rate
of Q1, · · · , QM is limited by DT. At the same time,
QM+1, · · · , QM+N will keep decreasing. Thus, the thresh-
old and Q1, · · · , QM will increase at the same rate until all
of the ports reach the steady state. In this case, the sufficient
condition for packet dropping in port i is

di > t2 (7)

And according to [17],

T (t2) =
α(R− C)B

(1 + αN)[(1 + αM)(R− C)− αNC] (8)

Therefore, the free buffer size when packets begin to be
dropped is

F (t2) =
T (t2)

α
=

(R− C)B
(1 + αN)[(1 + αM)(R− C)− αNC]

(9)

Considering these two cases, we can summarize the
sufficient conditions for packet dropping and free buffer size
while the packets from micro-burst traffic are dropped into
the following theorem.

Theorem 1. When R1 = R2 = · · · = RM = R, the
packets from micro-burst traffic will be dropped in port k (k =
1, 2, · · · ,M) if

dk >



αB

[1 + α(M +N)](R− C) ,
if R 6 C

(
1 + 1+αN

αM

)
αB

(1 + αN)[(1 + αM)(R− C)− αNC] ,
if R > C

(
1 + 1+αN

αM

)
(10)

and the free buffer size when packets are dropped is

F =



B

1 + α(M +N)
,

if R 6 C
(
1 + 1+αN

αM

)
(R− C)B

(1 + αN)[(1 + αM)(R− C)− αNC] ,
if R > C

(
1 + 1+αN

αM

)
(11)

Remarks:
When R 6 C

(
1 + 1+αN

αM

)
, equation (10) can be rewritten

as

R · dk − C · dk >
αB

1 + α(M +N)
(12)

If the micro-burst traffic size (i.e., R · dk) is fixed, then the
condition (12) can be easily satisfied for small dk or larger
R. This theoretically explains why micro-burst traffic readily
results in packet dropping.

Besides, when the packets are dropped, the free buffer
size is negatively correlated to the number of overloaded
ports (i.e., M + N ). Particularly, when the number of over-
loaded ports is small, the free buffer size would be very
large (e.g. B/2 if M + N = 1 and α = 1). DT reserves
this fraction of memory for two reasons. First, it provides a
cushion for newly overloaded ports, so that these ports will
not starve for memory. Secondly, because the threshold of
DT is proportional to the amount of unused memory, the
action that the reserved memory is occupied can be used to
notify DT to change the threshold. However, the reserved
buffer should be utilized when a port is transmitting micro-
burst traffic, because on the one hand, the time-scale of
micro-burst traffic is quite short. Occupying reserved buffer
will only last for relatively short time and is worthwhile
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since it contributes to absorbing the micro-burst traffic. On
the other hand, DT can be simply implemented by using a
shift register and a free buffer size counter if α is a power of
two. The actions that a packet enters into and departs from
the buffer can be used to inform DT of adjusting threshold
instead.

Moreover, from Fig. 3a, we have the following observa-
tion. To ensure fair buffer sharing among overloaded ports,
the packets from micro-burst traffic will be dropped after the
queue lengths of newly overloaded ports reach the queue
lengths of other ports. As a result, packets may be dropped
even though the micro-burst traffic size is far smaller than
the buffer size. However, avoiding packet dropping caused
by micro-burst traffic is of great importance. In addition,
it has few effects on the fairness among ports transmitting
long-lived flows that more shared buffer is allocated to the
ports transmitting micro-burst traffic because the time-scale
of micro-burst traffic is quite short compared to the dura-
tions of long-lived flows. Therefore, the fairness constraint
of DT could be temporarily relaxed to absorb micro-burst
traffic.

The similar insights can be obtained in the case R >
C
(
1 + 1+αN

αM

)
.

3.2 Ri (i = 1, 2, · · · ,M) is constant and R1 > R2 >
· · · > RM

In this case, the sufficient conditions for packet dropping
caused by micro-burst traffic and the corresponding free
buffer size can be given by the following two theorems.

Theorem 2. When
∑M
i=1(Ri −C) 6 (1+αN)C

α , packets will be
dropped in port k (k = 1, 2, · · · ,M) if

dk > tk (13)

where
tk =

α [Fk−1 + αFk−1(N + k − 1) +Gktk−1]

(Rk − C)[1 + α(N + k − 1)] + αGk

Fk = Fk−1 −
Gk(tk − tk−1)

1 + α(N + k − 1)
Gk =

∑M
i=k(Ri − C)

(14)

Time tk denotes the first time when the queue length Qk
hits the threshold; t0 = 0. And Fk denotes the free buffer
size at time t = tk. At t = 0, F0 = B/(1 + αN). Next,
we’ll use mathematical induction to prove this theorem. As
an example, the evolutions of queue lengths and threshold
when M = 4 are illustrated in Fig. 4.

Proof:
a). Basis: inequality (13) and equation (14) hold for port 1 (i.e.,

k = 1)
At t = 0, only port (M + 1), · · · , port (M + N)

are overloaded and they have reached their steady states,
therefore, we have

T (0) = αF0

F0 = B −∑M+N
i=M+1Qi(0)

Qi(0) = 0, i = 1, 2, · · · ,M
Qi(0) = T (0), i =M + 1,M + 2, · · · ,M +N

(15)

Solving F0 from (15), we get

F0 =
B

1 + αN
(16)

Port 1, · · · , port M become overloaded at time t = 0+;
the traffic arriving rate in port i is Ri. Thus, at time
t = 0+, Q1, · · · , QM will increase at a rate of (Ri − C).
As port 1, · · · , port M occupy the free buffer, the free
buffer size will decrease, which causes the decreasing of
the threshold, and then QM+1, · · · , QM+N will exceed the
threshold and decrease. Let D denote the decreasing rate of
QM+1, · · · , QM+N (D < 0), Then, at t = 0+, the free buffer
size will change as

F (t) = F0 −G1 · t−ND · t (17)

Thus, the dynamic threshold will change as

T (t) = α (F0 −G1 · t−ND · t) (18)

Differentiating both sides of (18), we have

T ′(t) = −αG1 − αND, t = 0+ (19)

When G1 6 (1+αN)C
α , the decreasing rate of threshold at

time t = 0+ is no larger than C , namely,

T ′(t) > −C (20)

We can prove this by contradiction. The maximum de-
creasing rate of queue length is C . Thus, if T ′(t) < −C ,
QM+1, · · · , QM+N will decrease at a rate of C . Meanwhile,
since G1 6 (1+αN)C

α , we have

T ′(t) > −C − αN(C +D) (21)

Substituting D = −C into (21), we have T ′(t) > −C , which
contradicts with the previous hypothesis.

Inequality (20) means that the threshold will decrease
at a rate lower than the port transmitting rate. Therefore,
Qi (i =M+1,M+2, · · · ,M+N) will decrease at the same
rate as that of threshold, namely,D = T ′(t). Combining (19),
we have

D = T ′(t) = − αG1

1 + αN
(22)

Substituting (22) into (18), we yield

T (t) = α

(
F0 −

G1

1 + αN
· t
)
, t = 0+ (23)

Equation (23) will hold until the queue length in port 1 hits
the threshold at time t = t1, then the packets in port 1 are
dropped, namely,

T (t1) = (R1 − C) · t1 (24)

Solving t1 from (24), we get

t1 =
αF0(1 + αN)

(R1 − C)(1 + αN) + αG1
(25)

Therefore, in port 1, packets are dropped if d1 > t1.
At time t1, the free buffer size reduces to

F1 = F0 −
G1t1

1 + αN
(26)

Thus, inequality (13) and equation (14) hold for k = 1.
b). Inductive step:
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We assume that inequality (13) and equation (14) hold
for port i (1 6 i 6M − 1).

After the queue length of port i hits the threshold at
time ti, the evolutions of queue lengths and threshold are
the same as those at time t = 0+, except that the free buffer
size is Fi, and there are Ni = N + i output ports whose
queue lengths decrease at the same rate as that of threshold.
Equation (23) can be rewritten as

T (t) = α ·
[
Fi −

Gi+1

1 + αNi
· (t− ti)

]
, t = t+i (27)

Equation (27) holds until the queue length Qi+1 hits the
threshold at t = ti+1, namely, T (ti+1) = (Ri+1 − C) · ti+1.
Then the packets in port (i + 1) are dropped. Solving ti+1,
we have

ti+1 =
α [Fi(1 + αNi) +Gi+1ti]

(Ri+1 − C)(1 + αNi) + αGi+1
(28)

Therefore, the packets in port i+1 will be dropped if di+1 >
ti+1.

At time ti+1, the free buffer size reduces to

Fi+1 = Fi −
Gi+1(ti+1 − ti)

1 + αNi
(29)

Thus, the inequality (13) and equation (14) hold for k =
i+ 1.

In conclusion, the inequality (13) and equation (14) hold
for k = 1, 2, · · · ,M .

We also have the following theorem when
∑M
i=1(Ri−C)

is larger than (1+αN)C
α :

Theorem 3. When
∑M
i=1(Ri−C) > (1+αN)C

α , packets in port
k (k = 1, 2, · · · , L) will be dropped if

dk > tk (30)

where
tk =

α {Fk−1 + [Gk − (N + k − 1)C]tk−1}
α[Gk − (N + k − 1)C] +Rk − C

,

Fk = Fk−1 − [Gk − (N + k − 1)C](tk − tk−1),
Gk =

∑M
i=k(Ri − C)

(31)

L is the largest k such that Gk >
[1+α(Nk−1)]C

α and L 6M .

The denotations and initial values of tk and Fk are the
same as those in Theorem 2. Again, we use mathematical
induction to prove this theorem.

Proof:
a). Basis: inequality (30) and equation (31) hold for port 1 (i.e.,

k = 1)
In this case, since G1 >

(1+αN)C
α and T ′(t) = −αG1 −

αND,
T ′(t) < −(1 + αN)C − αND (32)

Because D > −C , we can get

T ′(t) > −C (33)

In other words, the decreasing rate of threshold is larger
than the port transmitting rate. Therefore, at time t = 0+,
Qk (k =M+1,M+2, · · · ,M+N) will decrease at a rate of
C . Meanwhile, Qk (k = 1, 2, · · · ,M) will increase at a rate

of (Rk − C). Thus, at time t = 0+, the free buffer size will
change as

F (t) = F0 − (G1 −NC) · t (34)

Therefore, the threshold will change as

T (t) = α [F0 − (G1 −NC) · t] (35)

where F0 is given in (16).
Equation (35) holds until t = t1 when Q1 hits the

threshold and the packets in port 1 are dropped, namely,

T (t1) = (R1 − C)t1 (36)

Solving t1 from (36), we have

t1 =
αF0

α(G1 −NC) + (R1 − C)
(37)

Thus, the packets in port 1 will be dropped if d1 > t1.
The free buffer size at time t1 is given by

F1 = F0 − (G1 −NC)t1 (38)

Thus, inequality (30) and equation (31) hold for k = 1
b). Inductive step:
We assume that inequality (30) and equation (31) hold

for port i (1 6 i 6 L− 1).
After Qi hits the threshold at time ti, the evolutions of

queue lengths and threshold are the same as those at time
t = 0+, except that the free buffer size is Fi and there are
Ni = N + i output ports whose queue lengths decrease at
the rate of C . Thus, equation (35) can be rewritten as

T (t) = α · [Fi − (Gi+1 −NiC) · (t− ti)] , t = t+i (39)

Equation (39) holds until the queue length Qi+1 hits the
threshold at t = ti+1, namely, T (ti+1) = (Ri+1 − C) · ti+1.
Then the packets in port (i+1) begin to be dropped. Solving
ti+1, we have

ti+1 =
α[Fi + (Gi+1 −NiC)ti]

α(Gi+1 −NiC) +Ri+1 − C
(40)

Thus the packets in port (i + 1) will be dropped if di+1 >
ti+1.

At time ti+1, the free buffer size reduces to

Fi+1 = Fi − (Gi+1 −NiC)(ti+1 − ti) (41)

Therefore, the inequality (30) and equation (31) hold for
k = i+ 1.

In conclusion, the inequality (30) and equation (31) hold
for k = 1, 2, · · · , L.

3.3 Ri(i = 1, 2, · · · ,M) varies with time

As is shown in the previous analysis, according to the
decreasing rate of threshold, the evolutions of queue lengths
in port M + 1, · · · , port M + N can be divided into two
cases: the queue length decreases at the same rate as the
threshold and the queue length decrease at a rate of C .
When the arriving rate varies with time, the evolutions
can be either case at any time. Therefore, it’s impossible to
deduce a general sufficient condition here. Fortunately, the
way to get the sufficient condition is similar. Therefore, in
this part, we only present the analysis of a common scenario
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Fig. 6. Evolutions of queue lengths and threshold can be divided into
two scenarios (Theorem 4)

in data centers. Sufficient conditions for other scenarios can
be deduced in a similar way.

We consider the case that a master server sends queries
to multiple slave servers and each slave server responds
with a message. Micro-burst occurs when response mes-
sages from multiple slaves arrive at the switch simultane-
ously. Because of asynchrony among slaves, some of slaves
may start responding and finish responding ahead of others.
Therefore, the aggregated arriving rate of micro-burst traffic
increases at the beginning as more and more slaves begin
to respond. After a while, the arriving rate decreases as
more and more slaves finish responding. More precisely, let
R1(t) = R2(t) = · · · = RM (t) = R(t). As depicted in
Fig.5b, the arriving rate R(t) can be divided into 3 parts:

R(t) 6 C
(
1 + 1+αN

αM

)
0 6 t 6 d1

R(t) > C
(
1 + 1+αN

αM

)
d1 6 t 6 d2

R(t) 6 C
(
1 + 1+αN

αM

)
d2 6 t 6 d3

(42)

Therefore, when 0 6 t 6 d1 and d2 6 t 6 d3, the threshold
will decrease at a rate smaller than C . When d1 6 t 6 d2,
the threshold will decrease at a rate larger than C . In this
scenario, the sufficient condition and corresponding free
buffer size can be given by the following theorem:

Theorem 4. Let t1 and t2 be given by
(1 + αM + αN)

(∫ t1
0 R(τ)dτ − Ct1

)
= αB

(1 + αM)
∫ t2
0 R(τ)dτ − (1 + αM + αN)Ct2

=
αB+αN

[
αM

∫ d1
0 R(τ)dτ−(1+αM+αN)Cd1

]
1+αN

(43)

then we have following 4 sufficient conditions:
a). Packets will be dropped if

d1 > t1 (44)

The free buffer size when packets are dropped is

F (t1) =
T (t1)

α
=
B −M

∫ t1
0 R(τ)dτ +MCt1
1 + αN

(45)

b). When d1 6 t1, packets will be dropped if

d2 > t2 (46)

The free buffer size when packets are dropped is

F (t2) =
B +N

[
αM

∫ d1
0 R(τ)dτ − (1 + αM + αN)Cd1

]
1 + αN

+ (M +N)Ct2 −M
∫ t2

0
R(τ)dτ (47)

c). When d1 6 t1, d2 6 t2, and αM
∫ t3
d1
R(τ)dτ − (1 +

αM + αN)(t3 − d1)C > 0, packets will be dropped if

d3 > t2 (48)

The free buffer size when packets are dropped is

F (t2) =
B +N

[
αM

∫ d1
0 R(τ)dτ − (1 + αM + αN)Cd1

]
1 + αN

+ (M +N)Ct2 −M
∫ t2

0
R(τ)dτ (49)

d). When d1 6 t1, d2 6 t2, and αM
∫ t3
d1
R(τ)dτ − (1 + αM +

αN)(t3 − d1)C 6 0, packets will be dropped if

d3 > t1 (50)

The free buffer size when packets are dropped is

F (t1) =
T (t1)

α
=
B −M

∫ t1
0 R(τ)dτ +MCt1
1 + αN

(51)

Proof:
At t = 0+, the queue length of port 1, · · · , port M

increases at a rate of R(t) − C , and the queue length of
portM+1, · · · , portM+N evolves as the threshold, namely,

Qi(t) =

{ ∫ t
0 R(τ)dτ − Ct i = 1, 2, · · · ,M
T (t) i =M + 1,M + 2, · · · ,M +N

(52)
Substituting (52) into (1), we can get the threshold by

T (t) =
α
(
B −M

∫ t
0 R(τ)dτ +MCt

)
1 + αN

(53)

Let t1 be the time when Qi(t1) = T (t1)(i = 1, 2, · · · ,M).
Then t1 can be given by

(1 + αM + αN)

(∫ t1

0
R(τ)dτ − Ct1

)
= αB (54)

Then packet dropping will happen if Qi(d1) > T (d1)(i =
1, 2, · · · ,M), which is equivalent to

d1 > t1 (55)

If the condition (55) is met, then the free buffer size when
packets are dropped is given by

F (t1) =
T (t1)

α
=
B −M

∫ t1
0 R(τ)dτ +MCt1
1 + αN

(56)

If Qi(d1) 6 T (d1)(i = 1, 2, · · · ,M) (i.e., packets are not
dropped before time t = d1), then at t = d+1 , Q1, · · · , QM
will keep increasing at a rate of R(t) − C . Meanwhile,
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QM+1, · · · , QM+N will decrease at a rate of C . Thus, at time
t = d+1 , the queue length evolution of each port can be given
by

Qi(t) =

{ ∫ t
0 R(τ)dτ − Ct, i = 1, 2, · · · ,M
Qi(d1) + Cd1 − Ct, i =M + 1, · · · ,M +N

(57)
where

Qi(d1) = T (d1) =
α
(
B −M

∫ d1
0 R(τ)dτ +MCd1

)
1 + αN

(i =M + 1,M + 2, · · · ,M +N) (58)

Substituting (57) into (1), we can get

T (t) =
αB + αN

[
αM

∫ d1
0 R(τ)dτ − (1 + αM + αN)Cd1

]
1 + αN

+ α(M +N)Ct− αM
∫ t

0
R(τ)dτ (59)

Let t2 be the time when Qi(t2) = T (t2)(i = 1, 2, · · · ,M).
Then t2 can be given by

(1 + αM)

∫ t2

0
R(τ)dτ − (1 + αM + αN)Ct2

=
αB + αN

[
αM

∫ d1
0 R(τ)dτ − (1 + αM + αN)Cd1

]
1 + αN

(60)

In this period, packet dropping will happen if Qi(d2) >
T (d2)(i = 1, 2, · · · ,M), namely,

d2 > t2 (61)

If the condition (61) is met, then the free buffer size when
packets are dropped is given by

F (t2) =
B +N

[
αM

∫ d1
0 R(τ)dτ − (1 + αM + αN)Cd1

]
1 + αN

+ (M +N)Ct2 −M
∫ t2

0
R(τ)dτ (62)

If Qi(d2) 6 T (d2)(i = 1, 2, · · · ,M), then at time t = d+2 ,
Q1, · · · , QM will increase at a rate of R(t). Meanwhile,
QM+1, · · · , QM+N will decrease at a rate of C . Thus at time
t = d+2 , evolutions of queue lengths and threshold are the
same as those in t ∈ [d1, d2]. Therefore, the queue length
evolution of each port can be given by (57) and the threshold
can be given by (59). At time t ∈ [d2, d3], there are two cases,
which are depicted in Fig.6a and Fig.6b, respectively. Recall
that t2 is the time when Qi(t2) = T (t2)(i = 1, 2, · · · ,M),
where Qi(t) and T (t) is given by (57) and (59), respec-
tively. Therefore, the queue length evolves as case A if
Qi(t2) > T (t2)(i = M + 1,M + 2, · · · ,M + N). The
inequality Qi(t2) > T (t2)(i = M + 1,M + 2, · · · ,M +N)
can be rewritten as

αM

∫ t2

d1

R(τ)dτ − (1 + αM + αN)(t2 − d1)C > 0 (63)

In this case, packet dropping happens if

d3 > t2 (64)

The free buffer size when packets are dropped is given by
(62).

In the case B, we have the inequality Qi(t2) 6 T (t2)(i =
M + 1,M + 2, · · · ,M +N), namely,

αM

∫ t2

d1

R(τ)dτ − (1 + αM + αN)(t2 − d1)C 6 0 (65)

In this case, the threshold and queue length of port M +
1, · · · , port M +N will meet at time t0, where t0 is given by
Qi(t0) = T (t0)(i =M + 1,M + 2, · · · ,M +N), namely

αM

∫ t0

d1

R(τ)dτ − (1 + αM + αN)(t0 − d1)C = 0 (66)

At time t+0 , the queue length of port 1, · · · , port M in-
creases at a rate of R(t) − C , and the queue length of
port M + 1, · · · , port M + N evolves the same as the
threshold. The evolutions of queue length and threshold are
the same as those in duration t ∈ [0, d1]. Thus, the queue
length evolution of each port can be given by (52) and the
threshold can be given by (53). Recall that t1 is the time
when Qi(t1) = T (t1)(i = 1, 2, · · · ,M). Then packets will
be dropped if Qi(d3) > T (t1), which is equivalent to

d3 > t1 (67)

If condition (67) is met, then the free buffer size when
packets are dropped can be given by (45).

Remarks: By substituting (54) into (45), we can simplify the
free buffer size as

F (t1) =
B

1 + αM + αN
(68)

Therefore, the free buffer size is negatively correlated to the
number of overloaded ports, which is the same as that in
Theorem 1. Furthermore, from Fig.6, we also have the same
observation as that from Fig.3a that packets may be dropped
even though the micro-burst traffic size is far smaller than
the buffer size. Therefore, the insights from Theorem 1 can
also be obtained in this general case.

4 EDT POLICY

Analysis results indicate that the switch buffer should be
fully utilized and the fairness constraint of DT should be
temporarily relaxed to absorb micro-burst traffic. Therefore,
in this section, we propose the Enhanced Dynamic Threshold
(EDT) policy to absorb micro-burst traffic.

4.1 Basic Idea

Intuitively, increasing the buffer utilization can be simply
achieved by setting a larger α in DT policy. However, it
may result in fairness problem [17]. Specifically, if α is very
large, one output port can occupy the majority of memory,
starving newly overloaded ports. While ensuring the inter-
port fairness is also necessary when these ports are only
transmitting long-lived traffic or transmitting micro-burst
traffic.

According to the above considerations, we propose the
EDT policy. EDT allows an output port to aggressively
occupy buffer in a relatively short interval when the port
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or Buffer overflow
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Fig. 7. State transition diagram of EDT in each port

becomes overloaded. Specifically, for each port, EDT has
two states: controlled state and uncontrolled state. Two
thresholds are used in each state: T1 and T2. Specifically,
in the controlled state, T1 is used to restrict queue length
according to DT, namely, T1 = α(B − ∑iQi(t)). In the
uncontrolled state, T2 is used to enable a port to acquire
more buffer to absorb micro-burst traffic, while ensuring fair
buffer sharing among all ports in the uncontrolled state as
well. Therefore, port threshold is set to T2 = B/n, where n
is the number of uncontrolled ports.

Fig. 7 depicts the state transition diagram of EDT in each
port. At the beginning, EDT is in controlled state. It turns
into uncontrolled state when bursty traffic arrives and the
port becomes overloaded. When a port is in uncontrolled
state, the port will return to controlled state if one of follow-
ing three conditions is met: the port becomes underloaded,
buffer overflows, and timeout occurs. We now explain the
reason why a port should return to controlled state if these
conditions are met. First, if the port becomes underloaded,
then micro-burst traffic has left and thus the port should
return to the controlled state. Second, if the buffer overflows,
there are two cases: (1). The port is transmitting long-lived
flows. (2). The switch is not able to absorb the micro-
burst traffic. For either case, the queue length should be
controlled. Finally, the last condition (timeout) is in case of
the following scenario that might happen in practice. There
is a background flow in the port whose rate is just equal
to the link capacity. After a port has finished transmitting
micro-burst traffic, the buffer occupied by the port is not
freed immediately. So we use a timer to prevent the long-
time buffer occupancy in this case.

EDT has three advantages:

1) The output port can occupy every piece of available
buffer when it becomes overloaded. Thus packets
from micro-burst traffic are dropped only when it is
inevitable.

2) Buffer could be fairly shared among output ports
transmitting long-lived flows because the period
over which EDT stays in uncontrolled state is very
short. Buffer can also be fairly shared if there are
multiple ports transmitting micro-burst traffic.

3) EDT is simple enough to be implemented in high-
speed switches, as it only requires several additional
timers and counters.

The main challenge of EDT is how to recognize that the
output port becomes overloaded. From analysis, we observe
that when the output port becomes overloaded, its queue
length is increasing and no packets are dropped at the beginning,
so we use this characteristic for recognition.
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4.2 Design of EDT

Fig.8 shows the structure of EDT. We assume that there
are P ports in the switch. For each port, there is a state
decision module used for deciding which state the port is
currently in. The details of state decision module will be
shown in the next part. The module TD2

5 takes the states
of each port as input and determine the threshold T2. The
logic is simple: let T2 = B/n, where n is the number of
ports in uncontrolled state6. The last module of EDT is a
Multiplexer. It selects a threshold from T1 and T2 according
to the port’s state.

Fig. 9 illustrates the circuit diagram of state decision
module. Inputs of this diagram are enqueue signal, dequeue
signal, and packet dropping signal generated by each logic
output queue of the port. A pulse is generated on them
whenever a packet is enqueued, dequeued, and dropped,
respectively, from the output queue. There is also a buffer
overflow signal, on which a pulse is generated whenever
total shared buffer overflows. The output of the module de-
termines whether EDT is in controlled state or uncontrolled
state. TM1 and TM2 are countdown timers. Each of them
begins to count down from a specific time interval once
they are enabled. C1 and C2 are counters. They increase
(decrease) their values for every enqueue (dequeue) signal.
Next, we’ll show the details of these timers and counters
one by one.

5. TD is short for threshold determining.
6. Division in hardware is slow and might bring latency in high

speed switches. Fortunately, as there are only a limited number of
ports, we can simply implement module T2 by storing the value
B,B/2, · · · , B/n into registers, and the module just chooses one of
them according to the number of ports in uncontrolled state.
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TM2 begins to work when EDT turns to uncontrolled
state and determines the time interval over which EDT stays
in the uncontrolled state. It begins to count down when
its trigger pin receives a pulse signal, and stops either
when it receives a reset signal or it expires. When TM2 is
counting down, its output pin is set to 1, which indicates
that EDT is in uncontrolled state. When it expires (or it is
reset), its output pin is set to 0 to signal EDT to return
to the controlled state, then it will stop working until it
receives another trigger signal. TM2 can be reset by two
signals: buffer overflow and output of C1. The output of C1

implies that the port becomes underloaded, which will be
explained in detail in the following part. The counting time
of TM2 should be longer than the duration of most micro-
burst traffic (e.g. 10ms).

C2 is used for identifying that the output port becomes
overloaded. It works when EDT is in the controlled state.
Specifically, it increases for every pulse on enqueue signal
and decreases for every pulse on dequeue signal. Therefore,
its value represents the queue length increment. When it
reaches its counting number, EDT will change to the uncon-
trolled state, and a pulse will be generated to notify TM2 to
start counting, then C2 will stop working until EDT returns
to the controlled state. The counting number influences the
sensitivity of identifying overloaded state. On the one hand,
if this value is too large, TM2 will not be triggered until
the packets from micro-burst traffic are dropped. On the
other hand, if this value is too small, TM2 will be triggered
frequently, which results in unfairness among output ports
transmitting long-lived flows. Thus C2 should obey the
following three rules:

Rule 1: C2 works only when the port becomes over-
loaded.

Rule 2: C2 reaches its counting number before packets
are dropped.

Rule 3: The counting number should be as large as
possible on the premise of following Rule 2.

From Fig. 3, we notice that when a port becomes overloaded,
its queue length is increasing and no packets are dropped at
the beginning. Therefore, we let C2 reset itself whenever a
packet is dropped to obey Rule 1. Let the counting number
of C2 be cn2. Then cn2 should satisfy the following inequal-
ity to obey Rule 2:

cn2 6

{
(R− C) · t1, R 6 C

(
1 + 1+αN

αM

)
(R− C) · t2, R > C

(
1 + 1+αN

αM

) (69)

Meanwhile,
(R− C) · t1 > (R− C) · t2 (70)

and

(R− C) · t2=
αB(R− C)

(1 + αN) [(1 + αM)(R− C)− αNC])

> lim
R→∞

αB(R− C)
(1 + αN) [(1 + αM)(R− C)− αNC])

=
αB

(1 + αN)(1 + αM)
(71)

>
4αB

(2 + αP )2

where P is the number of switch ports. Thus cn2 should
satisfy inequality

cn2 6
4αB

(2 + αP )2
(72)

To obey Rule 3, we can set

cn2 =
4αB

(2 + αP )2
(73)

TM1 is used for making sure that TM2 is only triggered
by bursty traffic. Because if the arriving rate of micro-burst
traffic is too small, no packets will be dropped. Uncon-
trolling queue length in such scenario is unnecessary and
may cause unexpected results. Therefore, it’s essential to
add bursty traffic detection to EDT. TM1 works as follows.
When C2 begins to increase, TM1 begins to count down
from its initial value as well. If the value of C2 has not
reached its counting number yet when TM1 reaches 0, a
pulse is sent to C2 to notify it to reset itself. If the value
of C2 reaches its counting number before TM1 reaches
0, TM1 is reset and counts down from the default value
again. In this way, TM2 is triggered only by bursty traffic.
Unlike TM2, TM1 keeps working all the time. Its default
value is given as follows. No packets are dropped when
the duration of arriving traffic (denoted by d) satisfies the
following inequality:

d 6 t1 =
αB

[1 + α(M +N)] (R− C) (74)

Equation (74) can be rewritten as

R− C 6
αB

[1 + α(M +N)] · d (75)

Meanwhile,
αB

[1 + α(M +N)] · d >
αB

(1 + αP ) · d (76)

Thus, the packets will not be dropped if

R− C 6
αB

(1 + αP ) · d (77)

If the period over which C2 increases from 0 to cn2 is
denoted by tc2, then packets will not be dropped if

tc2 >
cn2

αB/ [(1 + αP ) · d] =
4(1 + αP )

(2 + αP )2
· d (78)

where d is longer than the duration of most micro-burst
traffic. Thus the default value of T1 should be set to

4(1 + αP )

(2 + αP )2
· d

C1 is used for identifying that the output port returns to
the underloaded state. On the one hand, the queue length
will not keep increasing all the time when the output port
is overloaded, since the port is transmitting packets at the
same time. Thus the shape of queue length evolution curve
is like a sawtooth, as is shown in Fig.10. On the other
hand, if a few packets are dequeued without any new
arrivals, EDT should be able to judge that the port becomes
underloaded. Therefore, we use C1 to record the number
of successively dequeued packets. Specifically, it increases
when a packet leaves from the queue and resets itself when
a packet enters into the queue. WhenC1 reaches its counting
number, a pulse is generated to reset C2.
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Fig. 12. Evolutions of queue lengths when N = 2, M = 1. Micro-burst
occurs at time 0.15s.

4.3 Analysis of EDT
In this part, we analyze EDT and give a formal comparison
between DT and EDT.

Consider a scenario when queue length is empty at
port 1, · · · , port M , and port (M + 1), · · · , port (M + N)
have reached their steady states; micro-burst traffic arrives
at port 1, · · · , port M with arriving rate R simultaneously.
To simplify our analysis, we assume that M 6 N R

R−C
9.

The sufficient condition for packet dropping caused by
micro-burst traffic with EDT policy can be given by the
following theorem:

Theorem 5. The packets from micro-burst traffic will be dropped
in port k (k = 1, 2, · · · ,M ) if

dk >
B

M(R− C) (79)

Proof: The evolutions of queue length and threshold
are depicted in Fig.11. Assume that micro-burst traffic ar-
rives at port 1, · · · , port M at t = 0, then at t = 0+,
the queue length of port 1, · · · , port M (Q1, · · · , QM ) will
increase at a rate of (R−C), and the queue length threshold
will decrease. At time t = t1, Q1, · · · , QM have increased
for 4αB

2+αP packets, and port 1, · · · , port M will turn into un-
controlled state, and the threshold will temporarily increase
toB/M . After that, ifQ1, · · · , QM continue to increase until
buffer overflows at time t = t2, port 1, · · · , port M will turn
into controlled state and packets from micro-burst traffic are
dropped. In summary, the packets from micro-burst traffic
will be dropped in port k if

dk > t2 =
B

M(R− C) (80)

Comparison between DT and EDT: When R 6
C
(
1 + 1+αN

αM

)
, compared to equation (10), additional(

1
αM + N

M

)
micro-burst traffic can be absorbed with EDT.

Even when α → +∞ (i.e., DT achieves the maximum
efficiency), EDT can still absorb more micro-burst traffic
than DT. This performance improvement, however, comes
at the price of fairness. Specifically, between [t1, t2], EDT
allows port 1, · · · , port M to occupy more buffer than
port (M + 1), · · · , port (M +N). However, as is discussed
in §3.1, we argue that this is worthwhile as the duration

8. If the queue length evolves as Curve 1, then the port is in the
overloaded state. If the queue length evolves as Curve 2, then the port
is changing between underloaded and overloaded state.

9. When M > N R
R−C , buffer may overflow before queue length

of port 1, · · · , port M reaches the threshold of uncontrolled state. The
expressions are more complex but the analysis method is the same.

of unfairness time is very small (t2 − t1 < B
M(R−C) ). In

addition, EDT is also carefully designed to ensure that this
duration is not too long (using C1 and TM2).

4.4 Parameter Settings

Before deploying EDT, three parameters need to be deter-
mined: α, d, and the counting number of C1. The setting of
α has been discussed in [17], and we don’t repeat here.

The parameter d is used for setting the counting time of
TM1 and TM2. As is mentioned before, when setting the
counting time of TM1, we should make sure that parameter
d is larger than the duration of most micro-burst traffic. On
the other hand, since the timer TM2 should not expire be-
fore micro-burst traffic ends or buffer overflows, parameter
d should be longer than the time for the micro-burst traffic
to fill the buffer. In summary, the parameter d should meet
the inequality

d > max {B/(Rmin − C), dmb} (81)

where Rmin is the arriving rate of the smoothest micro-
burst traffic, and dmb is the duration of micro-burst traffic.
In general, B/(Rmin − C) > dmb, therefore, we can only
consider the value of B/(Rmin −C). When the micro-burst
occurs in the switch, there are multiple (more than 2) input
ports sending packets to the same output port. Therefore,
we can roughly let Rmin = 2C . Then (81) can be rewritten
as d > B/C .

The counting number ofC1 (cn1) should not be too large,
otherwise, EDT could not detect that the port has become
underloaded. Besides, the parameter should be larger than
the number of successively dequeued packets when the
port is transmitting micro-burst traffic. Actually, if there
is no batching scheme in the port, there are usually only
one successively dequeued packet when micro-burst occurs.
Therefore, we can simply set cn1 to 3.

5 EVALUATION

In this section, we compare the performances of DT and
EDT by simulations on ns-2 platform [26]10and experiments
on a real testbed.

10. By default, ns-2 does not support shared memory architecture.
We implement it by enabling an output queue to get the queue length
in all other ports of the same switch (by using static member of a C++
class).
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Simulation settings; (b) Distribution of queue length in each port.

5.1 Deterministic Scenario

We consider a 16-port 1Gbps switch with 1MB shared
memory. As suggested by [17], we set α to 1 so that DT
performs well. The counting number of C1 is set to 3. The
counting time of TM2 is set to 10ms. According to above
parameters, the counting number of C2 is 8 and counting
time of TM1 is 2.1ms. In deterministic scenario, N output
ports are overloaded and have reached their steady states.
Meanwhile, M output ports begin to transmit micro-burst
traffic and become overloaded. When a port is overloaded,
the arriving rate of traffic is 2Gbps.

First, to show how EDT works, we set the duration of
micro-burst traffic to 6ms and let N = 2, M = 1. The queue
length evolution of each output port is shown in Fig. 12.
Port 3 begins to transmit micro-burst traffic at t = 0.15s
and finishes transmission 6ms later. In DT switches, packets
in port 3 are dropped immediately after the arriving of
micro-burst traffic. In comparison, in EDT switches, packet
droppings can be avoided in port 3 by temporarily letting
the port take over as much buffer as possible and letting
other ports make way for it.

The buffer utilization when packets from micro-burst
traffic are dropped is shown in Fig. 13. In DT switches,
the utilization decreases as the number of overloaded ports
decreases. In the worst case, the utilization is only 50.0%.
Compared to it, in EDT switches, the utilization is almost
100% for all Ns and Ms, which implies that packets are
dropped only when it is inevitable.

Fig. 14 illustrates the packet loss rate of micro-burst
traffic as a function of its duration when N = 2 and
M = 1. Apparently, the condition given by Theorem 1
in §3 agrees with the simulation result. Moreover, in DT
switches, packet dropping caused by micro-burst traffic
happens when the duration of micro-burst traffic reaches
2ms. While in EDT switches packet dropping won’t happen
until the duration is longer than 8ms. Note that when the
duration is 2ms, the traffic size is 2ms × 2Gbps = 0.5MB
and it only needs 0.25MB switch memory, while packets are
dropped in DT switches with 1MB buffer in this scenario.
On the other hand, when the duration is 8ms, the traffic size
is 8ms × 2Gbps = 2MB and it needs 1MB switch memory.
Packet dropping is inevitable in this scenario. In summary,
compared with DT, additional 300% micro-burst traffic can
be absorbed by EDT switch.

In the next, we use two simulations to show whether the
fairness achieved DT can also be achieved by EDT.

First, we evaluate the fairness when multiple output
ports are transmitting micro-burst traffic. In this simulation,
there is 1 output port transmitting long-lived flows and

there are 3 output ports transmitting micro-burst traffic. As
is shown in Fig.15a, the 1st micro-burst (in port 1) and the
2nd micro-burst (in port 2) arrive simultaneously, while the
3rd micro-burst (in port 3) arrives 3ms later. The durations
of micro-bursts are 6ms. The queue length CDFs of 3 ports
are depicted in Fig.15b. We have two observations from it.
First, when micro-burst traffic arrives at different ports at
the same time (micro-bursts in port 1 and port 2), EDT can
make sure that the buffer is strictly fairly shared. Second,
when one micro-burst arrives later than another (micro-
bursts in port 1 and port 3), the port transmitting later
arrived micro-burst will not starve for buffer. In addition
to graphical impression, we also use Jain’s fairness index [48]
to quantitatively estimate the fairness. The fairness index
ranges from 1/n (worst case, in this case n=3) to 1 (best case).
In this case, the fairness index of DT and EDT is 0.992 and
0.998, respectively. Thus, EDT can achieve almost the same
fairness as DT. In summary, EDT can ensure fair sharing of
buffer among ports transmitting micro-burst traffic.

We now evaluate the fairness among output ports trans-
mitting long-lived flows. The unfairness may happen when
an output port becomes overloaded while other ports have
reached their steady states because the port can occupy
more buffer than other ports at that time. Therefore, we
consider a scenario that a port becomes overloaded after
other ports have reached their steady states. Specifically,
port 1 and port 2 is in overloaded state at t = 0. Port 3
begins to transmit long-lived flows and becomes overloaded
at t = 0.15s. After a while, port 3 finishes transmitting long-
lived flows and becomes underloaded, while port 1 and
port 2 are still in overloaded state. When these ports are
in overloaded state, the traffic arriving rate in each port is
2Gbps. We sample the queue length of each port during the
overloading period of port 3. The CDF of queue length in
each port is shown in Fig. 16a and Fig.16b, where port 3
corresponds to the newly overloaded port. Port 3 can only
acquire a little more buffer than port 1 and port 2 when
the duration of long-lived flows are 500ms and 1000ms,
respectively. Therefore, fairness is well promised in these
cases. We also use Jain’s fairness index [48] to compare the
fairness between DT and EDT. We range the duration of
long-lived flows from 10ms to 1000ms. As shown in Fig.16c,
EDT can achieve the same fairness as DT as long as the
duration of long-lived flow is larger than 80ms, which is
only 8 times larger than the parameter d.
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5.2 Stochastic Scenario
5.2.1 Unresponsive ON-OFF traffic
Workload: In this scenario, there are two kinds of traffic in
each output port: background traffic and micro-burst traffic.
We use Poisson model to simulate background traffic. As
for the micro-burst traffic, we use the measurement results
from real data center traffic in [3]. Specifically, we use
Lognormal ON/OFF model to simulate micro-burst traffic.
In Lognormal ON/OFF model, packets are generated at a
constant rate of 2Gbps during “ON” periods and no packets
are generated during “OFF” periods. Both “ON” and “OFF”
intervals follow lognormal distribution. The average “ON”
and “OFF” durations are set to 2ms and 58ms, respectively,
and the standard deviations of them are equal to their
averages. The average arriving rate of background traffic
is 0.133Gbps, so that average load of each output port is
20% and the amount of background traffic is 2 times that of
micro-burst traffic. Switch settings are the same as that in
deterministic scenario.
Buffer utilization: First, we evaluate the buffer utilization
when micro-bursts cause packet droppings. Fig. 17a illus-
trates the average buffer utilization for different micro-burst
durations. In DT switches, buffer is fully utilized only when
the duration of micro-burst traffic is shorter than 2ms. The
buffer utilization is no larger than 60% when the duration is
longer than 3ms. In comparison, in EDT switches, buffer is
fully utilized for almost all micro-bursts.
Micro-burst absorption: Enabling buffer to be fully utilized
could make more micro-bursts absorbed. Fig. 17b illustrates
the ratio of lossless micro-bursts. In DT switches, few micro-
bursts can avoid packet dropping when their durations are
longer than 3ms. In comparison, in EDT switches, over 85%
of micro-bursts can be absorbed when their durations are
shorter than 5ms.
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Fig. 18. The ratio of micro-bursts that can avoid packet dropping with
different parameter settings

Fairness: In this part, we evaluate the fairness among switch
ports. We choose 3 ports and illustrate their queue length
CDFs in Fig. 17c, which shows that the queue lengths
have similar distributions. The queue length CDFs of other
ports are similar. Besides, the fairness index is 0.977 with
DT policy and 0.964 with EDT policy, which quantitatively
shows that the fairness achieved by DT policy can also be
promised by EDT policy.
Parameter sensitivity: Fig.18a shows the ratio of lossless
micro-bursts with d = 10ms, 100ms, 1ms, respectively. We
have shown (in Section 4) that the parameter d should meet
the inequality d > B/C . In this scenario, B/C = 8ms. From
the Fig.18a, we can observe that the parameter d will not in-
fluence the lossless ratio when d > 8ms. Specifically, lossless
ratio only slightly decreases when the parameter d increases
from 10ms to 100ms. Therefore, as long as d > B/C , the
performance of EDT is not sensitive to the parameter d.
However, if we set d = 1ms, the lossless ratio dramatically
drops, because TM2 will expire before the buffer is fully
used to absorb micro-burst traffic. Fig.18a shows the ratio
of lossless micro-bursts with cn1 = 3, 10, 100, respectively.
As is discussed in Section 4, EDT performs well by simply
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Fig. 19. Flow Completion Time (FCT) across different flow sizes with bursty traffic.
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Fig. 20. Flow Completion Time (FCT) with uniform traffic

setting the cn1 to 3. And increasing cn1 to 10 will not
influence EDT’s performances. However, cn1 should not be
too large, otherwise, EDT will not be able to detect that the
port has become underloaded.

5.2.2 Responsive traffic
In this part, we evaluate DT and EDT using responsive
flows (i.e., TCP flows). Two scenarios are considered. One
is with bursty traffic, in which a host will generate a query
message to all other hosts and other hosts will send a
response message to it simultaneously. The other is with
uniform traffic, where flows follow a one-to-one pattern.
Source host and destination hosts are randomly chosen.
In both scenarios, we use flow size distributions from a
real production data center supporting web search [10] to
generate TCP flows. Following [49], [50], [51], [52], [53], flow
arrivals are according to a Poisson process.

Flow completion time (FCT) is used as the performance
metric. We also normalize the FCTs to the values achieved
by DT for clear comparison.
Bursty traffic: Fig.19 shows flow completion time (FCT)
across different flow sizes. With EDT, more packet drop-
pings can be avoided for small flows, which improves their
flow completion times. Specifically, the 99th percentile of
flow completion time can be reduced by 14%-34% compared
to that with DT (Fig.19b). On the other hand, EDT can
achieve similar results as DT when flow size so large that
switch is unable to absorb the bursty traffic (Fig.19c).
Uniform traffic: When traffic is not bursty, EDT can achieve
similar performance as DT. Fig.20 shows flow completion
time with uniform traffic. The overall flow completion time
with EDT is almost the same as that with DT.

5.3 Implementation and Evaluation
Beyond simulations, we also implement EDT policy. As we
cannot program switch chips, we emulate the switch with
a server with multiple NICs instead, and implement DT
and EDT policies on top of it using Intel DPDK [27] — a
framework for fast packet processing on user space. After
that, we evaluate DT and EDT on a real testbed.

Core 1

Port RX

Port RX

Port RX

··
·

Core 2

··
·

L2 Learning

+

L2 Lookup

Core 3

··
·

Port TX

Port TX

Port TX

··
·

Shared Memory Pool

Buffer Management

Threshold

Packet Pointer (to Packet)

TX Ring

Rate Limiter

Receive Queue
Output Queue

Fig. 21. Structure of switch implemented by DPDK

5.3.1 Implementation
Fig.21 shows the structure of shared memory switch im-
plemented by DPDK. We use a pipeline model for packet
processing. Specifically, packet processing is divided into 3
parts: retrieve packets from receiving ports (receive), for-
warding packets to output queues (forward), and delivering
packets to the transmit ring buffers (send). Each part is
processed by different CPU cores.
Receive: In this part, Core 1 polls each receive port for
packets. If a packet is received, it is delivered to a receive
queue, by which the packet is passed to Core 2 for further
processing. The receive queue is implemented by DPDK’s
Ring Library, which is lock-free.
Forward: In this part, Core 2 will poll each receive queue
and fetch packets from it. For each packet, source and
destination MAC addresses are extracted from it. Thereafter,
the switch will add (update) the forwarding table according
to the source MAC address and source port, and look
up the destination port from forwarding table according
to the destination MAC address. If the destination port
is not found, the packet is flooded to all output queues.
The forwarding table is implemented as a hash table using
DPDK’s Hash Library. After the destination output port is
found, the packet is enqueued into the proper output queue.
Note that the CPU processing rate is much higher than the
line rate, thus most packets will be in the output queues
rather than receive queues.
Send: In this part, Core 3 will poll each output queue and
fetch a packet (if any) from it, and deliver the packet to
the transmit ring (TX Ring). Packets in the ring will be
sent out to the network by DPDK. However, if too many
packets are in TX Ring, then the buffer occupancy in output
queue cannot reflect the real buffer occupancy. Therefore,
we introduce a rate limiter into this part. The rate limiter is
very simple. Assume that we want to limit the sending rate
to R, and we have sent out a packet of size B, then next
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values achieved by DT for clear comparison.

packet in the output queue is not allowed to be sent until
B/R later.
Buffer Management: Each output queue has a threshold,
and packets to be enqueued are dropped if the queue length
is larger than the threshold. Buffer management policies are
implemented by controlling the thresholds.
Shared Memory Pool: Rather than processing real packet
data, packet delivery is achieved by pointers. Specifically,
once a packet enters into the switch, it is placed into a pre-
allocated shared memory pool, and a pointer to the packet
is returned when we fetch a packet from a receive port. To
send out a packet, we put the pointer into the TX Ring, and
DPDK’s driver will get packet data from shared memory
pool before sending the packet to the network.

5.3.2 Evaluation
Testbed setup: We build a small testbed with 4 servers
connected to a server emulating a switch with 4 ports. The
server emulating the switch is a Dell OptiPlex 7010 desktop
with a 4-core Intel R© CoreTM i3-3240 3.40GHz CPU, a 4GB
memory, a 500GB hard disk, and four Intel R© 82576 Gigabit
Ethernet NICs, running CentOS 7.2 with GNU/Linux kernel
3.10.0. The emulated switch has 256KB shared memory for
all ports, and the sending rate of each port is limited to
999Mbps by the rate limiter. Other servers are Dell Optiplex
780 desktops; each server has an Intel R©CoreTM 2 Duo E7500
2930 MHz CPU, 4 GB memory, a 500GB hard disk, and
an Intel R© 82567LM Gigabit Ethernet NIC, running CentOS
5.11 with GNU/Linux kernel 2.6.38. These hosts use TCP
NewReno as their transport protocols, and Delayed ACK
is disabled as is suggested in [54]. In EDT, the counting
numbers of C1 and C2 are set to 10 and 20, respectively.
The counting times of TM1 and TM2 are set to 5.56ms and
10ms, respectively. Parameter α is set to 1 as before.
Fan-in traffic: First, we use a fan-in traffic pattern to show
the ability of EDT to absorb micro-burst traffic. In this
experiment, a client will send a query to other servers, and
these servers will send a response message to the client,
leading to fan-in bursty traffic in the switch. This scenario is
common in many data center applications, such as partition-
aggregation structure in online user-facing services [9], [10],
[11], [12], synchronized reads in cluster-based storage [55],
shuffle stage in MapReduce [56].

We repeat each experiment for 100 times, and the av-
erage query completion time with different response sizes
is shown in Fig.22. With EDT, the query completion time
is much smaller than that with DT when the response size
is in [100KB, 170KB]. This is because EDT can absorb fan-

in bursts and thus most response flows can avoid TCP
retransmission timeouts11. For example, when the response
size is 150KB, with DT 64% of response flows suffer from
TCP timeouts, while with EDT only 10% of flows experience
timeouts.
Benchmark traffic: In this experiment, a client (running
on all hosts) is fetching data from servers (running on
other hosts). Following [49], [50], [51], [52], [53], we use the
flow size distribution from the real data center supporting
web search service [10], and generate the fetching events
according to a Poisson process. RTOmin is set to 10ms. The
network load is 50%. The experiment lasts for 5 minutes and
over 67,000 flows are generated.

Fig.23 shows the flow completion time (FCT) across
different flow sizes. With EDT, the FCT of small flows can be
greatly reduced. Specifically, with EDT the average and 99th
percentile FCTs of flows whose sizes are within [0, 0.1MB)
are reduced by 25.6% and 68.2%, respectively. Meanwhile,
the FCT of larger flows is not severely penalized. The
average FCT for flows in [0.1MB, 1MB) is 3.3% larger with
EDT than that with DT. The average FCT for flows in
[1MB, 10MB) and [10MB,+∞) is 2.1% and 6.6% smaller
with EDT than that with DT.

6 CONCLUSION

In this paper, we theoretically deduce the sufficient condi-
tions for packet dropping caused by micro-burst traffic and
estimate the corresponding free buffer size. The analysis
shows that the free buffer size is negatively correlated to
the number of overloaded ports. And in order to ensure
fair sharing of switch buffer among all ports, packets are
dropped even when the micro-burst traffic size is far smaller
than the buffer size. Thus, we propose the EDT policy
guided by the conclusions obtained from theoretical anal-
ysis. EDT can absorb micro-burst traffic as much as possible
by fully utilizing the buffer and temporarily relaxing the
fairness constraint. We evaluate DT and EDT on ns-2 plat-
form. We also implement a software prototype of EDT using
DPDK and evaluate DT and EDT on a real testbed. The
evaluations show that EDT can absorb more micro-bursts
than DT and improve flow completion time for small flows.
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