
IEEE Wireless Communications • August 2008 791536-1284/08/$25.00 © 2008 IEEE

e(k)

Kp

PI filter

KiT(1 + z-1)

2(1 – z-1)

TO P I C S I N WIRELESS SENSOR NE T W O R K I N G

INTRODUCTION
Wireless sensor networks (WSNs) are attracting
more and more attention from diverse research
communities due to their potential usage in
numerous commercial and military applications
and scientific research, such as medical care,
inventory tracking, battlefield surveillance, envi-
ronment monitoring, and habitat monitoring. As
in all distributed systems, time synchronization is

very important in a sensor network since the
design of many protocols and implementation of
applications require precise time, for example,
forming an energy-efficient radio schedule, con-
ducting in-network processing (data fusion, data
suppression, data reduction, etc.), distributing an
acoustic beamforming array, and performing
acoustic ranging (i.e., measuring the time of
flight of sound), logging causal events during sys-
tem debugging, and querying a distributed
database.

Time synchronization is a research area with
a very long history. Various mechanisms and
algorithms have been proposed and extensively
used over the past few decades. However, sev-
eral unique characteristics of WSNs often pre-
clude the use of the existing synchronization
techniques in this domain. First, since the
amount of energy available to battery-powered
sensors is quite limited, time synchronization
must be implemented in an energy-efficient
way. Second, some messages need to be
exchanged for achieving synchronization; how-
ever, the limited bandwidth discourages fre-
quent message exchanges among sensors. Third,
the small size of a sensor node imposes restric-
tions on computational power and storage
space. Therefore, traditional synchronization
schemes such as Network Time Protocol (NTP)
and Global Positioning System (GPS) are not
suitable for sensor networks because of com-
plexity and energy issues, cost efficiency, limit-
ed size,and so on.

CLOCK MODEL AND SYNCHRONIZATION

Clock synchronization is of significant impor-
tance in WSNs. Before delving into the details of
synchronizing clocks, we first define some termi-
nologies used in this article. c(t) denotes a per-
fect clock, where t is the real time, that is,
coordinated universal time (UTC). Every sensor
node maintains its own local clock, which is a
monotonically nondecreasing function of t. This
local clock is an ensemble of hardware and soft-

FENGYUAN REN AND CHUANG LIN, TSINGHUA UNIVERSITY

FENG LIU, BEIHANG UNIVERSITY

ABSTRACT

Time synchronization is one of the most fun-
damental services for numerous wireless sensor
network applications. In this article the defini-
tion and basic concepts of time synchronization
are introduced, and the related work is summa-
rized in brief. Through analyzing the characteris-
tics of the existing typical synchronization
protocols and making a comprehensive compari-
son of the performance of various algorithms, we
present a common guideline for designing the
time synchronization protocol in WSN. Follow-
ing this guideline, we develop a new time syn-
chronization protocol called Self-Correcting
Time Synchronization (SCTS), which converts
the time synchronization problem into an online
dynamic self-adjusting optimizing process to
make the offset compensation and drift compen-
sation simultaneously. The time and space com-
plexities of the algorithm implementation are
very low. In addition, the SCTS protocol fully
exploits the inherent broadcast property of wire-
less channel, so the communication overhead is
rather low. Because the algorithm implementa-
tion is based on the phase locked loop principle,
an equivalent digital PLL without an actual volt-
age controlled oscillator is also proposed to
avoid introducing the extra hardware required by
a traditional PLL circuit. Finally, we validate
SCTS on the Berkeley Mica2 experimental plat-
form, and the performance is evaluated and
compared to the existing typical time synchro-
nization protocol.

SELF-CORRECTING TIME SYNCHRONIZATION USING
REFERENCE BROADCAST IN

WIRELESS SENSOR NETWORK

Time synchronization
is one of the most
fundamental services
for numerous wireless
sensor network
(WSN) applications.
The authors introduce
the definition and
basic concepts of
time synchronization,
and summarize the
related work.

REN LAYOUT 8/6/08 1:49 PM Page 79

IEEE Wireless Communications • August 200880

ware components, essentially a timer that counts
the oscillations of a quartz crystal running a par-
ticular frequency. In general, the timer is pro-
grammed to generate an interrupt, which is
called a clock tick. At each clock tick, the inter-
rupt procedure increments the clock value stored
in memory.

For any two nodes’ local clocks ci(t) and ck(t),
the clock ci(t) is considered correct at time t if
ci(t) = c(t), or the clock ci(t) is considered accu-
rate at time t if dci(t)/dt = dc(t)/dt, and two clocks
ci(t) and ck(t) are synchronized at time t if ci(t) =
ck(t). The above definitions show that the two
synchronized clocks are not always correct or
accurate; time synchronization is not related to
time correctness and accuracy. As for most
applications in WSNs, it is sufficient to achieve
clock synchronization. Since the oscillator fre-
quency is time-varying due to ambient conditions
such as temperature changes, variations of elec-
tric supply voltage, and air pressure, clock ci(t)
of node i can be modeled as ci(t) = ai(t) t +
bi(t0), where bi(t0) is the clock offset, the differ-
ence between the time reported by clock ci(t)
and the real time at the initial instant t0 (i.e.,
bi(t0) = ci(t0) – c(t0)), and the clock drift ρi(t) is
defined as the difference in the frequencies of
the clock ci(t) and the perfect clock c(t) = t (i.e.,
ρi(t) = dci(t)/dt – 1). Thus, we also have ai(t) =
ρi(t) +1. It is noted that ρi(t) is a time variable,
which reflects the random deviation of oscillator
frequency from its nominal value. Straightfor-
wardly, we can have

ci(t) = aik(t)ck(t) + bik(t0), (1)

where ρik(t) = aik (t) – 1 and bik(t0) are relative
clock drift and relative clock offset, respectively.

A synchronization algorithm can either direct-
ly modify the local clock ci(t) or otherwise con-
struct a software clock hi(t). A software clock is a
function that takes a local clock value ci(t) as
input and transforms it into hi(t). For example,
hi(t) = hi(t0) + g{ci(t) – ci(t0)} is a software
clock that starts with the correct real time t0,
where function g{⋅} is used to convert the
counter value of the local clock into the interval
to construct one software clock. The popular
WSN node Mica2 has a crystal frequency of 4
MHz, which means that the resolution of the
local clock is 0.25 µs. If the software clock
counter has an increment every 64 clock ticks,
g{1} = 16 µs, which implies that the frequency

of the software clock is 62.5 kHz, and its resolu-
tion is 16 µs.

RELATED WORK

In the context of WSNs, time synchronization
refers to the problem of synchronizing clocks
across a set of sensor nodes that are connected
to one another over single-hop or multihop wire-
less networks. Up to now, many protocols have
been designed to address this problem, and typi-
cal algorithms include Reference Broadcast Syn-
chronization (RBS) [1], Lightweight Time
Synchronization (LTS) [2], TSync [3], Timing-
Sync Protocol for Sensor Networks (TPSN) [4],
Flooding Time Synchronization Protocol (FTSP)
[5], and Tiny-Sync and Mini-Sync (TS/MS)[6].
These protocols all have some basic features in
common: a simple connectionless messaging pro-
tocol, exchange of clock information among
nodes, mitigating the effect of nondeterministic
factors in message delivery, and processing uti-
lizing different schemes and algorithms, respec-
tively. They can be classified into two types:
bidirectional pair-wise synchronization and uni-
directional broadcast synchronization. TPSN,
LTS, TSync, and TS/MS fall into the former
group, RBS and FTSP the latter.

Unidirectional broadcast synchronization is
also called receiver-receiver synchronization. A
node periodically broadcasts wireless beacon
messages to its neighbors. The receivers use the
message’s arrival time as a point of reference for
comparing their clocks, and then exchange the
local timestamps of when they received the same
broadcast message, and finally compute their
offset based on the difference in reception times
to synchronize their clocks. This basic mecha-
nism is shown in Fig. 1a. RBS is a typical receiv-
er-receiver protocol. Compared to the traditional
protocols working on a LAN, its main contribu-
tion is to directly remove two of the largest
sources of nondeterminism involved in message
transmission, transmission time and access time,
through exploiting the concept of a time-critical
path, which is the path of a message that con-
tributes to nondeterministic synchronization
errors. Therefore, RBS can provide a high
degree of synchronization accuracy in sensor
networks [1]. FTPS uses a fine-grained clock,
medium access control (MAC) layer timestamp-
ing with several jitter reducing techniques, and
clock drift estimation to achieve relatively high
precision [2].

Bidirectional pair-wise synchronization is also
called sender-receiver synchronization, and is
performed by a handshake protocol between a
pair of nodes. Figure 1b illustrates its fundamen-
tal mechanism, including three steps:
• Sender node A sends a message with its local

time T1 as a timestamp, and receiver node B
receives this packet at its local time T2, where
T2 = T1 + d + δ. Here, δ and d represent the
offset between the two nodes and the end-to-
end delay respectively.

• At time T3, node B sends back an acknowledg-
ment packet. This packet contains the values
of T2 and T3. Node A receives the packet at
T4. Similarly, T4 is related to T3 as T4 = T3 +
d – δ.

n Figure 1. Basic synchronization mechanisms: a) unidirectional broadcast; b)
bidirectional pair-wise.

(a) (b)

Beacon Node A Node B

Tr

TbTa

Node 1 Node 2

T1

T4

T3

T2

REN LAYOUT 8/6/08 1:49 PM Page 80

IEEE Wireless Communications • August 2008 81

• Sender node A can now calculate the clock
offset and end-to-end delay as d = [(T2 – T1)
+ (T4 – T3)]/2 and δ = [(T2 – T1) – (T4 –
T3)]/2.
Subsequently, sender node A can synchronize

its clock to receiver node B’s clock. Although
TPSN, LTS, TSync, and TS/MS employ the same
bidirectional pair-wise synchronization mecha-
nism, they have exclusive features to meet the
particular requirements of different applications.
For example, to improve precision, TPSN takes
advantage of the availability of the MAC layer.
LTS provides a specified precision with little
overhead, rather than striving for maximum pre-
cision. Both TS and MS use multiple pair-wise
round-trip measurements and a line-fitting tech-
nique to obtain the offset and drift of the two
nodes, rather than directly calculating the offset
using the above equations. In addition, in
TS/MS, once node B receives the message from
node A, it needs to reply immediately without
any delay. It is beneficial to reduce storage over-
head through removing as many data points as
possible before the line fitting. TS and MS only
differ in this elimination step. TS uses a heuristic
to keep only two data points for each of the two
lines. However, the selected points may not be
the optimal ones. MS uses a more complex
approach to eliminate exactly those points.
Hence, TS gives a suboptimal solution with mini-
mal overhead, but MS provides an optimal solu-
tion with increased overhead. TSync has a
centralized version, called the Hierarchical Ref-
erencing Time Synchronization (HRTS) proto-
col, and a decentralized version, called the
Individual Time Request (ITR) protocol. Both
protocols exploit the usage of dedicated radio
channel for synchronization messages to avoid
inaccuracies due to variable delays introduced by
packet collisions.

Some other interesting time synchronization
mechanisms and algorithms have also been pro-
posed. For instance, Qun Li and Daniela Rus
put forward Asynchronous Diffusion (AD) [7],
in which any node can update its clock value
asynchronously with respect to other nodes in
the network through computing average clock
readings. Hu and Servetto [8] defined a protocol
for global synchronization in dense sensor net-
works. The clock synchronization proceeds in
concentric waves, starting from a master node
located in the center of the network. In the liter-
ature Hong and Scaglione [9] proposed a bio-
inspired network synchronization protocol for
large-scale sensor networks that emulates the
simple strategies adopted by biological agents
(e.g., fireflies).

SELF-CORRECTION TIME SYNCHRONIZATION

In fact, Eq. (1) points out two basic synchro-
nization principles: offset compensation and
drift compensation. If the synchronization
algorithm can determine the relative offset
bik(t0) between node clock ci(t) and clock ck(t)
at synchronization time t, clock ck(t) can be
readily synchronized to clock ci(t) through
compensating for the relative offset bik(t0) at a
series of synchronization points. The corre-
sponding synchronized clock ck

o(t) is depicted

in Fig. 2. (For the sake of simplicity and clari-
ty, we assume that both clocks ci(t) and ck(t)
are not accurate, and have different drifts but
with constant values; moreover, they have the
identical initial value: ci(0) = ck(0)). Since the
offset compensation does not take the impact
of clock drift on synchronization precision into
account, the synchronized clock ck

o(t) keeps the
same varying rate with the local clock ck(t),
which implies that the longer the synchroniza-
tion interval, the larger the synchronization
error. In order to improve precision we can
decrease the synchronization period, but this
will introduce too much overhead. If the rela-
tive clock drift aik(t) = ai(t) – ak(t) = –aki(t) is
accurately estimated, we can build a synchro-
nized clock using drift compensation. ck

d(t) in
Fig. 2 is such a synchronized clock whose fre-
quency is independent of the local clock ck(t),
but approximately approaches that of the refer-
ence clock ci(t). If the estimation of relative
clock drift was unbiased, ck

d(t) and ci(t) would
overlap (absolutely synchronize). However, in
practice it is difficult to obtain unbiased esti-
mation due to a variety of factors including
short-term effects such as crystal frequency
noise, temperature, and humidity changes, and
long term effects such as crystal aging and
noise in observations. We can only estimate it
as accurately as possible. The more accurate
this estimation value, the smaller the synchro-
nization error in the longer period. Compared
to offset compensation, which is effective for
short-term time synchronization, drift compen-
sation is beneficial for long-term synchroniza-
tion. Naturally, if these two compensation
techniques are employed together, the time
synchronization algorithm with high resolution
and moderate overhead can be yielded. The
synchronized clock ck

od(t) shown in Fig. 2 intu-
itively demonstrates this judgment.

All aforementioned existing algorithms
carry out the offset compensation, but only
some algorithms utilize drift compensation,
including RBS, FTSP, and TS/MS. The method
widely used to estimate clock drift is linear
regression, which requires a fixed number of
historical synchronization points stored locally

n Figure 2. Offset compensation and drift compensation.

c(t)

t

Perfect clockck(t)

ci(t)

ck
o(t)

ck
d(t)

ck
od(t)

ak

ai

ck(0)=ci(0)

REN LAYOUT 8/6/08 1:49 PM Page 81

IEEE Wireless Communications • August 200882

in a table at each node. With more timing data,
the least square estimator used for l inear
regression can generally make a better clock
drift estimation. For example, Tiny-Sync only
uses two timestamps, which means that the
storage overhead is very small, but it hardly
gives the optimal estimation value. On the con-
trary, Mini-Sync is able to provide the satisfied
drift estimation, but it needs more than 40 data
points. As for a sensor node with l imited
resources, it is unreasonable that the space
complexity of any employed algorithms be too
high. In addition, least square regression also
requires significant computation. Can we find
other algorithms with low space and time com-
plexity to estimate the clock drift? It is one of
the motivations in this work. On the other
hand, although bidirectional pair-wise synchro-
nization algorithms can achieve the goal of
time synchronization across the whole network,
they need many message exchanges among
nodes, which consumes too much energy, which
is l ikely to shorten network l ifetime. For
instance, there are n nodes in a cluster. At
least 2(n – 1) message exchanges are required
to synchronize all clocks in the cluster. The
beacon node sends n – 1 messages and receives
n – 1 messages. Each node sends one message
and receives one message. As opposed to two-
way synchronization, unidirectional broadcast
synchronization can also provide comparative
global time in the network with low communi-
cation overhead since it sufficiently exploits the
broadcast property of the wireless communica-
tion medium. FTSP is a good example. It is
noted that RSB is a typical broadcast synchro-
nization protocol, but only makes use of broad-
cast property to eliminate possible errors on
the sender side, and does not take reducing
communication overhead into consideration
because receivers need to exchange times-
tamps. Assume that there are n nodes in a
broadcast domain. A number of 2n exchange
messages is needed when the timestamps are
collected and evaluated at a central node. In
scenarios without central nodes, exchanging
timestamps takes n(n – 1) packets. Another
flaw of FTSP is that it requires calibration on
the hardware actually used in the deployment;
it is not a pure software solution independent
of hardware. The comparatively high time and
space complexity of the linear regression algo-
rithm used by FTSP is another flaw. Summariz-
ing the features of the existing algorithms, we
believe it should be preferable to revise a time
synchronization scheme that adopts offset com-

pensation and drift compensation simultane-
ously; also, both time complexity and space
complexity of the corresponding algorithm are
very low, and the communication overhead is
also small. Subsequently, we propose a new
synchronization scheme based on this basic
understanding and idea.

First, in order to reduce communication over-
head, the inherent broadcast property should
still be fully exerted. The beacon node periodi-
cally broadcasts the reference timestamped
packets at the physical layer. Since short-range
wireless communication is used in WSNs, the
coverage range of the broadcast domain is very
limited; for example, the maximum transmission
distance defined in IEEE 802.15.4 is 30 m, and
the corresponding maximum propagation delay
is only 100 ns, which does not impose any per-
ceptible impact on the synchronization precision
specified to be on the order of 1 µs. In other
words, the synchronization error caused by the
propagation delay can be negligible. Different
from the existing broadcast synchronization
scheme, in which once the receiver timestamps a
broadcast packet, the synchronization process is
immediately executed based on this individual
message), our new scheme uses a sequence of
successive broadcast reference packets to drive
the synchronized clocks on the receiver nodes to
gradually approach and eventually be locked to
the reference clock on the beacon node. By this
means, all the clocks in a broadcast domain will
be successfully synchronized.

To realize this synchronization solution, we
need to employ a phase locked loop (PLL) algo-
rithm, which is a well-known synchronization
algorithm found in many synchronization
schemes (NTP etc.). Its advantage is the low cost
of its implementation, together with generally
acceptable performance. Schematically, a PLL is
arranged as in Fig. 3. It contains three main
components: a loop filter, a voltage controlled
oscillator (VCO), and a pulse counter. The VCO
and counter constitute the local clock hardware.
The error between the reference clock and the
local clock enters the loop filter, which is in
charge of eliminating possible noise. The output
of the filter controls the frequency of the VCO
and eventually the local clock itself.

Generally, the PLLs employed for clock syn-
chronization are digital; thus, we can describe it
using the block diagram in the discrete domain
shown in Fig. 4a. For the sake of convenience,
the loop filter is defined as a proportional inte-
grative (PI) filter, whose parameters are Kp and
Ki. T is the synchronization period. c1(k) denotes

n Figure 3. The components of PLL for clock synchronization.

c1(k) c2*(k)

Reference clock Synchronized clock

+
-

Loop
filter

Phase
comparator Periodic pulses

Control
variable VCO Pulses

counter

The method used
widely to estimate
the clock drift is
linear regression,
which requires
a fixed number
of historical
synchronization
points stored locally
in a table at
each node.

REN LAYOUT 8/6/08 1:49 PM Page 82

IEEE Wireless Communications • August 2008 83

the timestamp of the reference clock carried in
the broadcast packet, and c2*(k) is the value of
the synchronized clock on an arbitrary node.
The VCO is necessary for a basic PLL algorithm
and is an actual device. Taking the requirement
of reducing cost into account, we do not expect
to introduce extra hardware cost only for time
synchronization. Next, we give an equivalent
scheme of a digital PLL that can directly work
on the local crystal oscillator instead of operat-
ing on an actual VCO.

From Fig. 4a, we can easily obtain

c2* (k + 1) c2* (k) + K0v(k)T, (2)

where T is synchronization period: T = t(k + 1)
– t(k); here, t is the real time. Since the nominal
frequency of VCO K0 is constant and free run-
ning, we can replace it with the intrinsic frequen-
cy of the crystal oscillator on the local node.
Since the counter simply counts the number of
pulses between the two broadcast packet arrivals,

K0{t(k + 1) – t(k)} = c2(k + 1) – c2(k), (3)

where c2(k) is the value of counter of the local
clock. Substituting Eq. 3 into Eq. 2 yields

c2* (k + 1) c2* (k) + v(k) [c2(k + 1) – c2(k)]. (4)

So far, we obtain an equivalent expression of a
digital PLL without an actual VCO. Figure 4a
illustrates its structure, which is useful for imple-
menting a software PLL. Functionally, it is the
same as that in Fig. 4b.

To determine the values of parameters Kp
and Ki, we use the zero-pole assignment method
[10] to tune the PI filter. From Fig. 4, we readily
obtain the open-loop transfer function and the
characteristic equation of closed-loop system,
respectively:

(5)

2(z – 1)2 + K0T(2Kp + KiT)z
+ K0T(KiT – 2Kp). (6)

Given that z = 0.5 is a zero point of the open-
loop system and there are two identical poles in
the closed-loop system. Through some derivation
and simplification, we have the following param-
eter relationship:

2Kp = 3KiT (7)

KiK0T2 = 1 (8)

The inherent frequency of the crystal oscilla-
tor of Mica2 mote K0 is 62.5 kHz. Let synchro-
nization period T equal 1 s; then

Ki= 1.6 × 10–5, Kp = 2.4 × 10–5.

Our new time synchronization scheme fully
makes use of the broadcast property of WSNs;
each node independently adjusts its synchro-
nized clock according to the reference clock
without any message exchange among nodes.

Hence, it is also called the Self-Correcting Time
Synchronization (SCTS) scheme. Besides saving
energy due to low communication loads, SCTS
has the following advantages:
• Merging the offset compensation and drift

compensation into an online dynamic self-
adjusting optimizing process.

• Low space complexity since the history time-
stamp data are compressed into a variable e(k
– 1) to provide contributions for drift estima-
tion.

• Low time complexity since there are no any
complex matrix computations used by the
least-square linear regression.

• Capable of absorbing some noise caused by
the uncertain factors occurring during time
stamping the reference broadcast packets on
the sender and receiver sides. Essentially, it is
the low-pass PI filter that can eliminate most
of the high-frequency components in the
sequence of reference clocks, which is benefi-
cial to improve precision. Of course, we can
also use the MAC layer timestamping and
other jitter reducing techniques to achieve the
higher precision.

• Robust against reference clock signal loss.
Naturally, the more frequent the arrivals of

the reference signal, the better the accuracy of
synchronization (i.e., the error is smaller). This
feature is advantageous in designing a proactive
time synchronization protocol for long-running
applications. In other words, the precision of
SCTS can be arbitrarily defined through chang-
ing the synchronization period. On the other
hand, the SCTS scheme has a transient self-
adjusting process and employs a narrow band-
width filter; thus, it has a drawback in having
relatively slow convergence of the local synchro-

G z
K K K T z K T K

zo
T p i i p()

()

()
=

+ + −
−

0

2

2 2

2 1

n Figure 4. The digital phase locked loop: a) the block diagram of a digital
PLL; b) an equivalent of the digital PLL without VCO.

(a)

f(k)v(k)

e(k)-

c2
*(k)c1(k)

Kp

PI filter

KiT(1 + z-1)

2(1 – z-1)

K0

VCO

Tz-1

Counter

1-z-1

(b)

v(k)

e(k)-

c2
*(k)

c2(k)

c1(k)
Kp

PI

KiT(1 + z-1)

2(1 – z-1) z-1

1 – z-1

REN LAYOUT 8/6/08 1:49 PM Page 83

IEEE Wireless Communications • August 200884

nized clock to the reference clock. However, it is
acceptable for a proactive time synchronization
protocol suitable for many WSN applications.

EXPERIMENT RESULTS

To validate the SCTS algorithm and evaluate its
performance, we implemented it on the popular
Berkeley Mica2 mote and built a small-scale net-
work, which consists of 10 nodes in a single broad-
cast domain. The node mounted on the MIB510
board acts as not only the beacon node but also
the sink node, and periodically broadcasts the ref-
erence clock signal. To measure the synchroniza-
tion precision, the sink node broadcasts a query
for the counter value of all local synchronized
clocks in the middle of two successive reference
clock broadcasts. Once receiving the request, each
node records the current counter value of the syn-
chronized clock and then returns it to the sink
node. After collecting the messages from all
nodes, the sink node hands it over to the PC
machine via the SerialForwarder program built in
TinyOS. The synchronization error is defined as
the maximum offset between the reference clock
and all synchronized clocks. This is not a perfect
solution because it may introduce measurement

errors. For convenience in clarifying our argument
and making a comparison, we use the same exper-
iment configuration and measurement approach
to evaluate the TSPN algorithm. Setting the peri-
od T to 25 s and 50 s, we conduct the experiments
and draw the sampling points of synchronization
errors in Fig. 5. Obviously, the relative clock drift
severely deteriorates the performance of the syn-
chronization scheme merely adopting offset com-
pensation (like TPSN etc.). The drift
compensation mechanism employed by some algo-
rithms (our SCTS etc.) makes a considerable
improvement. Although the performance is relat-
ed to the synchronization frequency, the precision
is not too sensitive to the frequency variance when
it is limited in a certain range because the crystal
oscillator approximately operates in a stable status
so there is no drastic change in ambient condi-
tions. To clearly demonstrate the performance
improvement, we compute the statistics of syn-
chronization errors and list them in Table 1.

CONCLUSIONS AND FUTURE WORK

Time synchronization is an indispensable part of
the infrastructure in wireless sensor networks.
We conclude that an effective time synchroniza-

n Figure 5. Synchronization error.

Sample point

500
0

0.5

Sy
nc

hr
on

iz
ti

on
 e

rr
or

 (
m

s)

1
1.5

2
2.5

3
3.5

100 150 200

SCTS (T = 25 s)

250 300

500
0

0.5
1

1.5
2

2.5
3

3.5

100 150 200

TPSN(T = 25 s)

250 300

500
0

1

2

3

4

5

100 150 200

SCTS(T =50 s)

250 500300 350 400 450

2000
0

2

4

6

8

10

400 600 800

TPSN(T =50 s)

1000 20001200 1400 1600 1800

Time synchronization
is an indispensable
part of infrastructure
in wireless sensor
networks. We
conclude that an
effective time
synchronization
scheme should
consider both the
offset compensation
and drift
compensation
simultaneously.

REN LAYOUT 8/6/08 1:49 PM Page 84

IEEE Wireless Communications • August 2008 85

tion scheme should consider both offset compen-
sation and drift compensation simultaneously;
also, both time complexity and space complexity
of the algorithm should not be very high, and the
communication overhead should also be limited.
To achieve this goal, in this article we convert the
clock synchronization problem into an online
dynamic self-adjusting optimizing process. The
implementation algorithm based on PLL can
make offset and drift compensations with low
time and space complexity at the cost of slow
convergence. The measurement results from the
experiments on Berkeley motes show that our
SCTS scheme outperforms TPSN with tthe same
configurations and measurement methods.
Although our current investigation is limited to a
single broadcast domain, the proposed SCTC
algorithm is readily extensible to network-wide
time synchronization using the mechanism of
root node discovery and maintenance revised in
the FTSP algorithm [5]. This will be a subject of
our future work. In addition, although the mea-
surement methods are sufficient to make the ver-
ification, they are not accurate enough. We will
design a precise measurement approach, for
example, equipping a GPS receiver for every
node, to carefully evaluate the performance and
determine the achievable precision of various
algorithms in future work.

ACKNOWLEDGMENTS
This work is supported in part by a grant from
the National Grand Fundamental Research 973
Program of China (2006CB303000), National
Natural Science Foundation of China (No.
60573122 and 60773138), and National High-
Tech Research and Development Plan (863) of
China (No. 2006AA01Z225, 2006AA01Z223 and
2006AA09Z117). The authors would like to
thank editors and anonymous reviewers for their
insightful comments.

REFERENCES
[1] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network

Time Synchronization Using Reference Broadcasts,”
Proc. 5th Symp. Op. Sys. Design and Implementation,
2002, pp. 147–63.

[2] J. Van Greunen and J. Rabaey, “Lightweight Time Syn-
chronization for Sensor Networks,” Proc. 2nd ACM
Int’l. Wksp. Wireless Sensor Networks and Apps., 2003,
pp. 11–19.

[3] H. Dai and R. Han, “Tsync: A Lightweight Bidirectional
Time Synchronization Service for Wireless Sensor Net-
works,” ACM SIGMOBILE Mobile Computing and Com-
mun. Rev., vol. 8, no. 1, 2004, pp. 125–39.

[4] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-Sync
Protocol for Sensor Networks,” Proc. 1st ACM Conf.
Embedded Networked Sensor Sys., 2003, pp. 138–49.

[5] M. Maroti et al., “The Flooding Time Synchronization
Protocol,” Proc. 2nd Int’l. Conf. Embedded Networked
Sensor Sys., 2004, 39–49.

[6] M. L. Sichitiu and V. C. Simple, “Accurate Time Synchro-
nization for Wireless Sensor Networks,” Proc. IEEE Wire-
less Commun. and Networking, 2003.

[7] Q. Li and D. Rus, “Global Clock Synchronization in Sen-
sor Networks,” Proc. IEEE INFOCOM ’04, Hong Kong,
2004.

[8] A.-S. Hu and S. D. Servetto, “Asymptotically Optimal
Time Synchronization in Dense Sensor Networks,” Proc.
2nd ACM Int’l. Wksp. Wireless Sensor Networks and
Apps., Sept. 2003, pp. 1–10.

[9] Y. W. Hong and A. Scaglione, “A Scalable Synchronization
Protocol for Large Scale Sensor Networks and Its Applica-
tions,” IEEE JSAC, vol. 23, no. 5, 2005, pp. 1085–98.

[10] B. Friedland, Advanced Control System Design, Pren-
tice Hall, 1996.

BIOGRAPHIES
FENGYUAN REN (renfy@csnet1.cs.tsinghua.edu.cn) is an asso-
ciate professor at Tsingua University. He obtained a Ph.D.
degree in computer science from Northwestern Polytechnic
University in 1999. From 2000 to 2001 he worked in the
Electronic Engineering Department of Tsinghua University
as a postdoctoral fellow. In 2002 he moved to the Com-
puter Science and Technology Department of Tsinghua
University. He has more than 60 papers in journals and
conferences. His research interests include flow control in
computer networks, control in/over networks, wireless net-
works, and wireless sensor networks.

CHUANG LIN is a professor with the Department of Computer
Science and Technology, Tsinghua University. He received a
Ph.D. degree in computer science from Tsinghua University
in 1994. His current research interests include computer net-
works, performance evaluation, network security analysis,
and Petri net theory and its applications. He has published
more than 200 papers in leading journals and conference
proceedings in these areas, and has published three books.

FENG LIU received a Ph.D. degree in control science and
engineering from Xi'an Jiaotong University, China, in 2000.
From September 2000 to December 200 he was a postdoc-
toral fellow in the Department of Electronics Engineering,
Tsinghua University. Now he is an associate professor with
the School of Electronic and Information Engineering, Bei-
hang University. His research interests include complex net-
works and systems, delay- and disruption-tolerant
networking, and transmission control protocols of satellite
networks.

n Table 1. Statistic of synchronization error.

Item
SCTS TPSN

T = 25 s T = 50 s T = 25 s T = 50 s

Mean (ms) 1.162 1.126 1.28 3.07

Deviation (ms) 0.282 0.316 0.53 4.00

Maximum (ms) 1.760 1.728 3.86 9.07

REN LAYOUT 8/6/08 1:49 PM Page 85

