
Modeling and Analyzing Latency in the Memcached

system

Wenxue Cheng1, Fengyuan Ren1, Wanchun Jiang2, Tong Zhang1
1Tsinghua National Laboratory for Information Science and Technology, Beijing, China
1Department of Computer Science and Technology, Tsinghua University, Beijing, China

2School of Information Science and Engineering, Central South University, Changsha, China

March 27, 2017

abstract

Memcached is a widely used in-memory caching solution in large-scale searching scenarios. The most pivotal
performance metric in Memcached is latency, which is affected by various factors including the workload pattern,
the service rate, the unbalanced load distribution and the cache miss ratio. To quantitate the impact of each factor
on latency, we establish a theoretical model for the Memcached system. Specially, we formulate the unbalanced
load distribution among Memcached servers by a set of probabilities, capture the burst and concurrent key arrivals
at Memcached servers in form of batching blocks, and add a cache miss processing stage. Based on this model,
algebraic derivations are conducted to estimate latency in Memcached. The latency estimation is validated by
intensive experiments. Moreover, we obtain a quantitative understanding of how much improvement of latency
performance can be achieved by optimizing each factor and provide several useful recommendations to optimal
latency in Memcached.

Keywords
Memcached, Latency, Modeling, Quantitative Analysis

1 Introduction

Memcached [1] has been adopted in many large-scale websites, including Facebook, LiveJournal, Wikipedia, Flickr,
Twitter and Youtube. In Memcached, a web request will generate hundreds of Memcached keys that will be
further processed in the memory of parallel Memcached servers. With this parallel in-memory processing method,
Memcached can extensively speed up and scale up searching applications [2].

Latency is the most pivotal performance metric of the Memcached [2]. Previous works have verified that the
latency is affected by various factors, including the workload pattern [3], the service rate [4, 5], the unbalanced
load distribution [6] and the cache miss ratio [7]. The workload pattern refers to both the average rate and the
burst degree of key arrivals at each Memcached server, and the load distribution presents how loads are distributed
among different Memcached servers. Focused on each factor, many proposals have been developed to improve the
latency performance in Memcached systems, such as reducing the load for each Memcached server [2], utilizing
high performance interconnection technology such as InfiniBand [8, 9] and RDMA [10, 11] to improve service
rate, optimizing the replication algorithms to improve the imbalance among Memcached clusters [12, 13], and
reducing cache miss ratio [7]. However, these proposals only focus on some partial factors, and there is still no
comprehensive and quantitative understanding of which factor has the most significant impact on the latency and
how much improvement on latency can be achieved by optimizing each factor. Although recent analytical work
[14, 15] has presented some latency estimations for a general distributed service system, they own the following
three limitations to apply to Memcached scenarios. 1) Does not address unbalanced load distribution among
Memcached servers. 2) Apply to independent Poisson traffic but cannot handle the burst and concurrent key

1

Front-end Web Servers

(Memcached Clients)

Memcached
Servers

Back-end
Database

End-user

Requests

Values

Figure 1: Memcached Architecture.

arrivals at each Memcached server. 3) Cannot accurately describe the two-stage processing of an end-user request
in the Memcached system.

This paper aims to quantitate the impact of each factor on Memcached latency. To address the limitations of
previous models, we establish a specific model for the Memcached system through three measures. 1) Introducing
a set of probabilities to formulate the unbalanced load distribution among Memcached servers. 2) Developing
a GIX/M/1 model to formulate the queueing process at Memcached servers, where the burst and concurrent
keys are regarded as batching blocks. 3) Adding a cache miss processing stage with M/M/1 queues. Based on
this model, algebraic derivations are conducted to estimate the latency in Memcached, which is separated into
three parts, i.e. the network latency, the processing latency at Memcached servers, and the processing latency
at database. The latency estimation is validated under various realistic configurations. Moreover, we conduct a
quantitative analysis on the latency estimation to demonstrate which factor has the most significant impact on
the latency of Memcached and how much improvement can be achieved by optimizing each factor. Insights and
recommendations via modeling and analyzing the latency in Memcached are are twofold.

1) The processing latency at Memcached Servers reaches a cliff point when the server utilization gets to a
specific value, which is negatively related with the burst degree of keys. Under the Facebook workload, the specific
utilization is about 75%. To ensure low latency, we recommend that the Memcached server utilization should
keep below the specific utilization and load-balancing mechanisms should take effect before and Memcached server
extends the specific utilization.

2) The latency of end-users grows logarithmically as an end-user request generates more Memcached keys or the
cache miss ratio increases. Since an end-user request always generates numerous Memcached keys and the cache
miss ratio is always quite tiny, we recommend drastically decreasing the number of Memcached keys generated
from an end-user request instead of reducing the tiny cache miss ratio.

The rest of the paper is organized as follows. Section 2 presents an overview of the Memcached architecture as
well as the related work. Subsequently, a specific model for Memcached is established in Section 3 and the latency
estimation is deduced in Section 4. Further in Section 5, we conduct intensive experiments to validate the latency
estimation, quantitate the impact of each factor on latency in Memcached, and summary the key insights and
recommendations of improving latency performance in the Memcached system. Finally, the paper is concluded in
Section 6.

2 Background and Related Work

2.1 Overview of Memcached

During the past 10 years, Memcached has been widely deployed in many large-scale websites such as Facebook,
LiveJournal, Wikipedia, Flickr, Twitter and Youtube. By caching database results in the high-speed memory,
Memcached avoids reading data from the low-speed disk, thus improves the user experience.

As illustrated in Fig.1, in a typical Memcached system, the Memcached clients are deployed in the front-end
web servers, and the Memcached servers are located between the front-end web servers and the back-end database.
Data are stored as key-value items. When an end-user request arrives, the Memcached client transforms the request
into hundreds of keys. For each key, one Memcached server is selected based on a key-to-server hashing algorithm
for further processing. If the corresponding value has been cached, the Memcached server returns it. Otherwise,

2

the missed key will be relayed to the back-end database. Till all the values for these keys are returned, the original
end-user request is completed.

In addition, traffic of Memcached has some specific features.
1) The arrival of keys is concurrent and burst. According to the measurement results in Facebook [3], two or

more keys might arrive at one Memcached server during a tiny time(< 1µs) with a large probability of 0.1159, and
the inter-arrival gap of keys follows a Generalized Pareto distribution, which is heavy-tailed and indicates burst
arrival of keys.

2) The load distribution among different Memcached servers is unbalanced. Based on the statistical results in
Facebook [3], a small percentage of values are accessed quite frequently, while the rest numerous ones are accessed
only a handful of times. Such that Memcached servers caching the popular items have to handle a heavy load,
while other Memcached servers are light-loaded.

2.2 Optimizations of Latency in Memcached

Latency is the most pivotal performance metric in a Memcached system. There is a lot of work attempting to
optimize latency in realistic Memcached deployments. We find that the optimization work mostly focuses on the
following factors.

1) Load on one Memcached server. Heavy load for one Memcached server always results in poor latency
of processing. To improve latency, systems like Facebook [2] always deploy numerous Memcached servers in their
Memcached clusters such that the average load size for one Memcached server is appropriate .

2) Service rate of Memcached servers. The latency performance in Memcached is always limited by the
service rate of Memcached servers. Especially when the 10 Gigabit Ethernet has been widely used in the data
centers, the bottleneck limiting latency reduction lies not in the network but in Memcached servers. In Facebook,
keys may arrive at one Memcached server at a maximum speed of 105 per second, and the average inter-arrival gap
is 16µs [3]. While a 10 Gbps link can transmit at most 6× 106 keys (no larger than 200B) or 1.2× 106 values (no
larger than 1KB) per second, the average cost of Memcached servers to handle a single key can even be up to 12µs
[16]. Consequently, the network utilization is less than 10% while the Memcached server utilization is as high as
75%. Thus, improving the service rate of Memcached servers can significantly reduce the latency. In this context,
many relevant optimizations are proposed. Intel overcomes the thread-scaling limitations of Memcached servers
[17], and provides multi-core configuration guidelines [18]. High performance technologies such as InfiniBand [8, 9]
and RDMA [10, 11] have been adopted to improve the performance of Memcached. Besides, the Memcached
architecture has already been implemented on FPGAs [4] and embedded cores [5] to reduce latency.

3) Unbalanced load distribution among Memcached servers. If some Memcached servers handle a
heavy load while others are light-loaded, the processing latency in heavy-loaded servers is much larger than that
in light-loaded servers. However, latency of an end-user request is always determined by the maximum latency of
the keys generated by it. Thus, the unbalanced load distribution among Memcached servers has a negative impact
on latency. To overcome this problem, load balance mechanisms, such as improving the replication algorithms
[12, 13], are introduced in Memcached.

4) Cache miss ratio. It has been convinced that even modest improvement of the cache miss ratio impacts
the latency performance a lot for Memcached [7]. For example, assuming the average read latency from the cache
and the database are 200µs and 10ms, respectively, reducing the cache miss ratio from 2 % to 1 % would reduce
the average latency from 400µs to 300µs. Several systems learn from the newest cache technologies and attempt to
reducing the cache miss ratio to improve the latency. GD-Wheel (GDW) [19] and GD-SizeFrequency [20] modify
their cache allocation and eviction policies; Cliffhanger [7], Dynacache [21], Moirai [22], Mimir [23] and Blaze [24]
optimize their resource allocation based on the hit rate curve; Twitter and Facebook [2] improve their Memcached
slab class allocation to better adapt to varying item sizes.

Besides above factors, the number of Memcached keys generated from one end-user request is another
factor impacting the latency in Memcached. Since fetching more items results in waiting for longer time, many
websites, such as Google and Wikipedia, have tried to minimize the number of items in their pages to improve the
latency performance.

To sum up, there are diverse factors that impact latency in Memcached and optimizing any of these factors
seems to be effective. However, it is difficult to judge which one factor has the most significant impact on the
latency and how much improvement on latency can be achieved by optimizing each factor. As far as we are
concerned, few previous theoretical models are specific to latency in Memcached. In this paper, we will show a

3

A Job

N Tasks
N Servers

1

1

1

The job is
completed

𝐒𝟏

𝐒𝟐

𝐒𝐍

Simple Queue

Figure 2: A typical Fork-Join model

An End-user

 Request

N Memcached

Keys

Memcached

Servers
Hit

Database

P1
∗ N

P2 ∗
N

P
M ∗ N

1 −
𝑟

𝑟

The End-user

Response

Values

Values

 KeysS1

S2

SM

𝑮𝑰𝑿/𝑴/𝟏 Queue

𝑴/𝑴/𝟏 Queue

Load distribution

among servers

Miss

Figure 3: Specific model for Memcached.

quantitative understanding of the latency in Memcached through a modeling and analyzing method.

2.3 Fork-Join Model

The Fork-Join model has been widely used to depict the behavior of parallel processing in many data analytical
systems like MapReduce [25] and Amazon’s EC2 [26]. It captures similar features of Memcached. As illustrated
in Fig.2, in a typical Fork-Join model, a job is split into N tasks to be parallelly processed by N servers and the
job will be completed after all its tasks are serviced. Based on this model, latency estimations [14, 27–30] have
been proposed for a general distributed service system. However, the typical Fork-Join model and the latency
estimations can not be directly used for Memcached, due to the following limitations.

1) One-to-one task distribution. A typical Fork-Join model assumes that a job arriving at the system
consists of the same number of tasks as the number of servers [27–29]. That is, each server only serves one
task for a job. But in Memcached, keys generated from an end-user request are distributed among all available
Memcached servers based on a key-to-server hash algorithm. In this case, some Memcached servers need to
process more than one keys for an end-user request. Even worse, the load distribution among Memcached servers
is always unbalanced, and this unbalanced load distribution has a rather negative impact on latency. Therefore,
the one-to-one task distribution in the typical Fork-Join model is not matched with Memcached systems.

2) Simple service queues. Although the typical Fork-Join model has been extended to multiple service
queues [14, 30], the concurrent arrivals at servers has not been taken into consideration. However, in Memcached,
keys always arrive burstily and concurrently at each Memcached server, and these burst and concurrent keys are
likely to introduce large latency. Therefore, the typical Fork-Join model based on simple service queues fails to
quantitate the negative impact of burst and concurrent keys on latency in Memcached.

3) One single processing stage. In the typical Fork-Join model, a job is immediately completed after each
task is serviced by its corresponding server. However, in Memcached, the processing results of keys at Memcached
servers might be missed, and the missed keys will be relayed to the back-end database. Although the cache
missing ratio is rarely tiny, the huge latency of reading data from the database makes the missing cases non-
ignorable. Thus, the typical Fork-Join model that has only one single processing stage can not capture such cases
of Memcached to analyze the latency.

3 Specific Model for Memcached

This section presents our specific model for the Memcached system. As illustrated in Fig.3, addressing the
limitations of the typical Fork-Join model, we develop our own model that applies to Memcached systems. Relative
to the typical Fork-Join model, the new model mainly includes the following three enhancements.

1) We introduce a set of probabilities {pj}M
j=1 to formulate the unbalanced load distribution

among Memcached servers. On one hand,
∑M
j=1{pj} = 1 and each probability {pj} denotes that on average

pj ∗ N out of N keys generated from an end-user request are hashed to Memcached server Sj . On the other

4

hand, the probabilities {pj}Mj=1 indicate the average load of all Memcached servers follow the proportional relation

{p1, p2, · · · , pM}. When pj 6≡ 1
M , the load distribution among Memcached servers is unbalanced.

2) Considering the burst and concurrent key arrivals as batching blocks, we develop a GIX/M/1
model to formulate the queueing process at Memcached servers. Specially, the GIX/M/1 queue has
three implications.

i) GI implies that the arrival of keys can be not only Poisson but also any other pattern. For instance, the
inter-arrival time of keys in Facebook follows a Generalized Pareto distribution [3], which is heavy-tailed and
indicates bursts. We just assume the key arrivals at each Memcached server are independent in this model.
Actually, the keys are generated by independent end-user requests from numerous Memcached clients. At each
Memcached server, keys from different end-user requests are independent, and the number of keys belonging to
the same end-user request is quite limited relative to the number of simultaneous end-user requests. Thus, the
assumption of independent key arrivals is acceptable.

ii) X means that the concurrent arrivals are formulated as batching blocks. According to the measurement
results in Facebook [3], two or more keys might arrive during a tiny time (< 1µs) with a large probability of
0.1159. Let q denote the concurrent probability. Since all the keys that arrive at the same Memcached server are
independent, the batch size X, i.e. the number of concurrent keys, follows a Geometric distribution,

P{X = n} = qn−1(1− q)

iii) M shows that the service time of each key follows an exponential distribution, which is a closed form for
the response time CDF in practical key-value systems according to [12]. Moreover, similar assumption for service
time is also adopted in recent work for Memcached, such as Chronos [31] and C3 [13].

3) We add a cache miss processing stage, where the service pattern are formulated as a M/M/1
queuing model. Memcached servers have a cache miss ratio r, with which probability the missed keys will be
relayed to the back-end database. The cache miss processing stage is formulated as a M/M/1 queuing model for
three reasons.

i) The unbalanced load distribution among database servers is ignored, because the database is greatly offloaded
in Memcached [3, 17, 18] and the variation of load size among database servers becomes negligible.

ii) The arrival of missed keys at database servers approximately follows a Poisson process, because the missed
keys can be regarded as randomly selected from the departure processes of Memcached servers, where the service
time is exponential.

ii) The service time of each key in the database servers follows an exponential distribution, similar with the
service time at Memcached servers discussed above.

In summary, taking all of unbalanced load distribution among Memcached servers, burst and concurrent key
arrivals at Memcached servers and cache miss processing stage into account, our model breaks the limitations of
the typical Fork-Join model, and matches the Memcached system exactly.

4 Latency Estimation

Based on our established model, this section presents the algebraic derivations of the latency estimation in Mem-
cached. Henceforth, we use T (t) and (T)k to denote the cumulative probability function (CDF) and the kth quantile
of a stochastic time T , respectively. Key notations are summarized in Table 1 for the sake of terseness.

4.1 Latency Composition

Let T (N) denote the latency of an end-user request which generates N Memcached keys, and we index the keys
from 1 to N . For the ith key, the latency Ti between its generation and fetching the corresponding value mainly
consists of three parts,

Ti = ni + si + di

where ni is the network latency, si is the processing latency at Memcached servers, and di is the processing latency
at database. The end-user latency T (N) is determined by the maximum latency of the N keys,

T (N) = max
i=1,··· ,N

{Ti} = max
i=1,··· ,N

{ni + si + di}

5

Table 1: Key Notations

Notation Definition

N Number of Memcached keys generated form an end-user request.
T (N) Latency of an end-user request which generates N Memcached keys.
TN (N) Maximum network latency of N keys.
TS(N) Maximum processing latency of N keys at Memcached servers.
TD(N) Maximum processing latency of N keys at database.
M Number of Memcached servers.

{pj}Mj=1 Load distribution among Memcached servers.
q Concurrent probability of keys for each Memcached server.
X Batch size of the concurrent keys.
TX Inter-arrival gap of batched keys for one Memcached server.
λ Average rate of key arrivals, λ = E[X]/E[TX].
µS The average service rate at Memcached servers.
δ Unique root of δ = LTX ((1− δ)(1− q)µS) in (0, 1).
r Cache miss ratio of Memcached servers.
µD The average service rate at database.

Obviously, T (N) is bounded by

max {TN (N), TS(N), TD(N)} ≤ T (N) ≤ TN (N) + TS(N) + TD(N) (1)

where 
TN (N) , max

i=1,··· ,N
{ni}

TS(N) , max
i=1,··· ,N

{si}

TD(N) , max
i=1,··· ,N

{di}

That is, the end-user latency T (N) can be estimated by the maximum network latency TN (N), the maximum
processing latency at Memcached servers TS(N), and the maximum processing latency at database TD(N). Sub-
sequently, we will discuss these three latency in detail.

4.2 Network Latency

In this part, we will derive the maximum network latency, i.e. TN (N) = max
i=1,··· ,N

{ni}.
For the ith key, the network latency ni consists of the constant propagation and transmission delay, as well

as the dynamic queueing delay. In Facebook, the aggregate workload arriving at one server can reach at most
105 requests per second [3], while a 10Gbps link can transmit more than 6 × 106 “Keys” (no larger than 200B)
requests or 1.2× 106 “Values” (no larger than 1KB) per second, which implies that the network utilization is no
more than 10%. Therefore, there are almost no queueing in the network thus the queueing delay can be ignored.
Consequently, the network latency ni can be considered to be constant.

Therefore, the Maximum network latency of N keys is also constant,

TN (N) = max
i=1,··· ,N

{ni} = constant (2)

4.3 Processing Latency at Memcached Servers

In this part, we will estimate the maximum processing latency at Memcached servers, i.e. TS(N) = max
i=1,··· ,N

{si}.

We will obtain the processing latency of one key at Memcached servers from the GIX/M/1 queuing model first,
and then deduce the maximum processing latency of N keys.

6

4.3.1 The processing latency of one key

According to our model (Section 3), the queueing process at Memcached servers is formulated as a GIX/M/1
queuing model. In this model, the inter-arrival gap of batched keys TX follows a general distribution of TX(t), the
batch size X follows a geometric distribution with a mean of 1

1−q , and the service time X follows an exponential

distribution with an average of 1
µS

.
Let TS represent the processing latency of one key at Memcached servers, then TS must be larger than the

queueing time TQ of the corresponding batch, but no larger than the completion time TC of the batch, i.e.

TQ < TS ≤ TC (3)

Thus, we can estimate TS by computing the queueing time and the completion time of the batch it belongs to.
The queueing time and the completion time of a batch can be obtained from a GI/M/1 model, which is

transformed from the GIX/M/1 model. This transformation has two steps.

• The inter-arrival gap of a batch follows the general distribution TX(t) as above-mentioned.

• Suppose that a batch contains X keys indexed as {1, · · · , X} and the service time of the lth key is Xl. Hence,
Xl follows the same exponential distribution of X , and the batch size X follows a geometric distribution
with a mean of 1

1−q . The total service time of this batch XX =
∑X
l=1 Xl is a geometric sum of exponential

stochastic variables. According to [32], XX follows an exponential distribution with an average of 1
(1−q)µS

.

That is, the service time of a batch follows an exponential distribution with an average of 1
(1−q)µS

.

Consequently, we can get CDF of the queueing time TQ and the complete time TC of a batch from this GI/M/1
queue, based on theorems in queuing theory [33],

TQ(t) = 1− δe−(1−δ)(1−q)µSt (4)

TC(t) = 1− e−(1−δ)(1−q)µSt (5)

where δ ∈ (0, 1) is the unique solution of
δ = LTX ((1− δ)µS) (6)

and LTX (s) denotes the Laplace transform of TX(t). The value of δ is determined by the arrival pattern of keys
and the server utilization. From (4) and (5), we can obtain the kth quantile of TQ and TC , respectively,

(TQ)k = max

{
ln δ − ln(1− k)

(1− δ)(1− q)µS
, 0

}
(7)

(TC)k =
− ln(1− k)

(1− δ)(1− q)µS
(8)

Based on (3)(7)(8), we can get an estimation for the kth quantile of TS ,

max

{
ln δ − ln(1− k)

(1− δ)(1− q)µS
, 0

}
< (TS)k ≤ − ln(1− k)

(1− δ)(1− q)µS
(9)

4.3.2 The maximum processing latency of N keys

According to our model (Section 3), there are a total of M Memcached servers. When an end-user request generates
N keys, on average pj ∗N of them are hashed to Memcached server Sj (j = 1, · · · ,M). Define

si,j ,

{
si, if the ith request is distributed to server Si
0, others

Thus, TS(N) , max
i=1,··· ,N

{si} = max
j=1,··· ,M

{
max

i=1,··· ,N
{si,j}

}
. In this way, TS(N) can be considered as the maximum

processing latency at the M Memcached servers.

7

Let TSj be the processing latency of one key at Memcached server Sj . Obviously, si,j follows the same
distribution as TSj

as long as the ith key is hashed to Sj . Thus, the CDF of TS(N) can be computed as follows.

TS(N)(t) = P

{
max

j=1,··· ,M

{
max

i=1,··· ,N
{si,j}

}
< t

}
=

M∏
j=1

N∏
i=1

P {si,j < t}

=
M∏
j=1

[TSj (t)]Pj∗N

(10)

where the second equal sign comes from the independence of {si,j} for all i = 1, · · · , N and j = 1, · · · ,M , and
the last equal sign comes from that there are on average pj ∗N keys hashed to the Memcached server Sj for each
j = 1, · · · ,M . Define

TS(1)(t) ,
M∏
j=1

[TSj (t)]Pj (11)

TS(1)(t) can be treated as the CDF of a stochastic time TS(1), which is determined by TSj
(the processing latency

of one key at Memcached server Sj , j = 1, · · · ,M) and {pj}Mj=1 (the load distribution among Memcached servers).
Combining (10) and (11), the CDF of TS(N) can be rewritten as

TS(N)(t) = [TS(1)(t)]N

According to the approximation of the maximal statistics [34], the expectation of TS(N) can be approximated as

the N
N+1

th
quantile of TS(1),

E[TS(N)] = (TS(1)) N
N+1

(12)

To obtain the N
N+1

th
quantile of TS(1), we get the following proposition after some algebraic derivations in

Appendix 8.1.

Proposition 1. Suppose that Memcached server S1 has the heaviest load, i.e. p1 is the maximum of {pj}Mj=1,

then the kth quantile of TS(1) is bounded by

(TS1)
k

1
p1
≤ (TS(1))k ≤ (TS1)k (13)

Proposition 1 indicates that latency for end-users is depended on the worst case among the Memcached servers,
which is consistent with previous work [12, 13, 31]. With the bound of (TS(1))k in (13) and the bound of (TS)k
in (9), the expectation of TS(N) in (12) is bounded by

max

 ln δ + ln(1− (N
N+1

)
1
p1)

(1− δ)(1− q)µS
, 0

 ≤ E[TS(N)] ≤
ln(N + 1)

(1− δ)(1− q)µS
(14)

4.4 Processing Latency at Database

In this part, we will estimate the processing latency of database, i.e. TD(N) = max
1≤i≤N

{di}.
Let r denote the cache miss ratio and K be the number of missed keys out of total N keys. Then K follows a

multinomial distribution with a mean of N ∗ r. To estimate TD(N), we consider the following two cases.
1) K = 0, i.e. there are no missed keys. This case has a probability of

P{K = 0} = (1− r)N (15)

And the expectation of TD(N) in this case is

E[TD(N)|K = 0] = 0 (16)

8

2) K > 0, i.e. there exist missed key. This case has a probability of

P{K > 0} = 1− (1− r)N (17)

And the expectation of K in this case is

E[K|K > 0] =
E[K]

P{K > 0}
=

N ∗ r
1− (1− r)N

(18)

Let TD denote the processing latency of one missed key at database. According to our model (Section 3), we can
obtain the CDF of TD by solving an M/M/1 queue, where the service time follows an exponential distribution
with an average of 1

µD
, and the load is so light that the utilization ρ� 1,

TD(t) = 1− e−(1−ρ)µDt ≈ 1− e−µDt (19)

For K missed keys, the processing latency at database di follows the same distribution of TD. And for other keys,
the processing latency at database di remains 0. Then the CDF of TD(N) can be computed as follows.

TD(N)(t) = P

{
max

i=1,··· ,N
{di} < t

}
=

N∏
j=1

P {di < t} = [TD(t)]K
(20)

According to the approximation of the maximal statistics [34], the expectation of TD(N) can be approximated by

the K
K+1

th
quantile of TD,

E[TD(N)|K] ≈ (TD) K
K+1

=
1

µD
ln(K + 1) (21)

where the last equal sign is because the CDF in (19). With (18) and (21), we can estimate the expectation of
TD(N) in this case.

E[TD(N)|K > 0] ≈ 1
µD

ln (E[K|K > 0] + 1)

≈ 1
µD

ln
(

N∗r
1−(1−r)N + 1

) (22)

Finally, combining the two cases, the expectation of TD(N) can be deduced as

E[TD(N)] = P{K = 0} ∗ E[TD(N)|K = 0]+
P{K > 0} ∗ E[TD(N)|K > 0]

≈ 1−(1−r)N
µD

∗ ln
(

N∗r
1−(1−r)N + 1

) (23)

4.5 Latency Estimation

In summary, we obtain a latency estimation for the Memcached system.

Theorem 1. The latency T (N) of an end-user request that generates N Memcached keys is separately bounded
by three parts,

max {TN (N), TS(N), TD(N)} ≤ T (N) ≤ TN (N) + TS(N) + TD(N)

1) The network latency TN (N) is almost constant;

2) The processing latency at Memcached servers TS(N) satisfies

max

{
ln δ + 1

p1
ln(N + 1)

(1− δ)(1− q)µS
, 0

}
≤ E[TS(N)] ≤

ln(N + 1)

(1− δ)(1− q)µS

3) The processing latency at database TD(N) can be estimated by

E[TD(N)] ≈
1− (1− r)N

µD
∗ ln

(
N ∗ r

1− (1− r)N
+ 1

)

9

Table 2: Factors that impact Latency in Memcached

Symbol Factor

q Concurrent probability of keys for each Memcached server.

µS Average service rate at each Memcached server.

δ
Solution of (6). Determined by the arrival pattern of keys

and the service rate at each Memcached server.

p1 Largest load ratio among Memcached servers.

r Cache miss ratio.

N Number of keys generated from an end-user request

In Theorem 1, we prefer to estimate the latency for end-user requests in form of expected value rather than
the 99.9th percentile value, because the expected value indicates the average level of the latency while the 99.9th
percentile value only presents the bad case one end-user will experience with a tiny probability of 0.1%. In
addition, the expected latency for an end-user request statistically equals to N

N+1 percentile of the latency for one
Memcached key, which is one of the most concerned metric in recent performance evaluations [2, 31, 35]. As listed
in Table 2, Theorem 1 reveals the main factors that impact latency in Memcached.

5 Validation and Quantitative Analysis

In this section, intensive experiments are conducted to validate our latency estimation in Theorem 1. Moreover,
through these validations and numerical analysis, we obtain a quantitative understanding of how much improve-
ment of latency performance can be achieved by optimizing each factor in Table 2.

5.1 Basic Validation

The first step is to show that Theorem 1 can exactly estimate the latency in Memcached under a realistic config-
uration. The testbed consists of two Memcached clients and four Memcached servers. Each client or server runs
on a standalone physical machine with Intelr CoreTM i5-5200U CPU and 8GB memory. All machines connect
with each other through a ToR switch and all links are 1Gbps. A total of 512 connections are created between the
clients and servers. We execute the multi-thread Memcached test tool of mutilate [36], which has been well-tested
[16, 35], and generate workload according to Section 5 of [3], which provides a statistical model based on the real
Facebook trace. In detail, the arriving keys for each Memcached server have a concurrent probability q = 0.1, and
the interarrival time between adjacent keys follows a Generalized Pareto distribution

TX(t) = 1−
(

1 +
ξλt

1− ξ

)−1/ξ

(24)

where the average arrival rate λ = 62.5Kps and the burst degree ξ = 0.15. In our deployment, the average
service rate at each Memcached server µS and the network latency ni are measured to be 80Kps and 50µs,
respectively. We configure that each end-user request generates N = 150 Memcached keys, the load distribution
among all Memcached servers is balanced, the cache miss ratio r = 0.01, and the average service time at database
µ−1
D = 1ms.

The experiment lasts for 10 min and generates almost 106 end-user requests in total. We measure the average
end-user request latency T (N), as well as three partial latencies, i.e. the network latency TN (N), the processing
latency at Memcached servers TS(N), and the processing latency at database TD(N). As shown in Table 3, the
experiment results are matched with the latency estimation in Theorem 1. Moreover, we record TS , the processing
latency for a single key at Memcached servers. As drawn in Fig.4, the kth quantile of TS is tightly bounded by
(9). That is, in the case of Facebook workload, our estimation about the Memcached latency is correct.

10

Table 3: Validating Facebook Workload

Latency Theorem 1 Experiment Confidence Interval

TN (N) 20µs 20µs [18.12µs, 21.68µs]
TS(N) 351µs ∼ 366µs 368µs [362µs, 373µs]
TD(N) 836µs 867µs [855µs, 879µs]

T (N) 836µs ∼ 1222µs 1144µs [1128µs, 1160µs]

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

La
te

n
cy

 (
µ

s)

kth Quantile

Equation (9)
Experiment

Figure 4: The kth quantile of processing latency for one
key at Memcached servers.

5.2 Impacts of Factors

Subsequently, we will show that Theorem 1 accurately estimates the latency in Memcached under all actually
depolyable configurations. Configurable factors include the workload pattern, the load distribution among Mem-
cached servers, the number of keys generated from an end-user request, and the cache miss ratio. At the same
time, the improvement of latency performance achieved by optimizing each factor is quantitated. When discussing
one factor, others maintain the original values as in Section 5.1.

5.2.1 Workload Pattern

The workload pattern mainly impacts the processing latency TS(N) at Memcached servers. And there are three
specific factors in the workload pattern, i.e. the concurrent probability of keys, the burst degree of keys and the
average arrival rate of keys.

i) q: The concurrent probability of keys. We repeat the experiment in Section 5.1 with the concurrent
probability of keys (q) varying from 0 to 0.5 and record the average value of TS(N). As illustrated in Fig.5, the
experiment results of E[TS(N)] is very close to that computed with Theorem 1.

Obviously, the more concurrently keys arrive, the larger processing latency will be. In our model, concurrent
keys are treated as batches. The average batch size 1

1−q indicates how many keys concurrently arrive at one

Memcached server in the average sense. According to the estimation of TS(N) in (14), E[TS(N)] grows linearly
with the increase of 1

1−q , i.e.

E[TS(N)] = Θ

(
1

1− q

)
ii) ξ: The burst degree of keys. In the Generalized Pareto distribution, a larger ξ indicates more burst

arrivals and ξ = 0 means that the arrival pattern is Poisson. We choose different ξ from 0 to 0.6 and repeat the
experiment in Section 5.1. As drawn in Fig.6, the experiment result of E[TS(N)] is exactly matched with that of
Theorem 1.

The result shows that the more burst the keys, the higher processing latency end-users will experience. Ac-
cording to the estimation of TS(N) in (14), the quantitative relationship between TS(N) and ξ is implicit in the
value of δ. And we will provide an in-depth discussion about δ later.

11

 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 0.1 0.2 0.3 0.4 0.5

La
te

n
cy

 (
µ

s)

Concurrent Probability

Theorem 1
Experiment

Figure 5: Evolution of E[TS(N)]
when q varies from 0 to 0.5.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6

La
te

n
cy

 (
µ

s)

Burst Degree ξ

Theorem 1
Experiment

Figure 6: Evolution of E[TS(N)]
when ξ varies from 0 to 0.6.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80

La
te

n
cy

 (
µ

s)

Arrival Rate (Kps)

Theorem 1
Experiment

Figure 7: Evolution of E[TS(N)]
when λ varies from 10Kps to
75Kps.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80

La
te

n
cy

 (
µ

s)

Arrival Rate λ (Kps)

ξ=0
ξ=0.6
ξ=0.8

Figure 8: Evolution of E[TS(N)]
when ξ = 0, 0.6, 0.8, λ varies from
10Kps to 75Kps and µS = 80Kps.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 60 80 100 120 140 160 180 200

La
ta

n
cy

 (
µ

s)

Service Rate µs (Kps)

ξ=0
ξ=0.6
ξ=0.8

Figure 9: Evolution of E[TS(N)]
when ξ = 0, 0.6, 0.8, λ = 62.5Kps
and µS varies from 65Kps to
200Kps.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

La
te

n
cy

 (
µ

s)

Largest Load Ratio

Theorem 1
Experiment

Figure 10: Evolution of E[TS(N)]
when p1 varies from 0.1 tp 0.9, Λ =
80Kps and µS = 80Kps.

iii) λ: The average arrival rate of keys. With the arrival rate λ varying from 10Kps to 75Kps, the
experiment in Section 5.1 is repeated and the evolution of E[TS(N)] is recorded. As depicted in Fig.7, the
experiment result is quite close to that of Theorem 1.

From Fig.7, we can find E[TS(N)] increases gently when λ is less than 50Kps, but sharply as λ grows more
than 60Kps. Therefore, there exists a cliff point of latency when λ is about 60Kps. At this cliff point, the
corresponding Memcached server utilization ρS , λ

µS
is about 75%.

Similar to ξ, the quantitative relationship between TS(N) and λ is implicit in the value of δ in (14). To achieve
an in-depth understanding of the cliff point, we conduct a numerical analysis on the special parameter δ.

Discussion: According to (6), the value of δ is determined by not only ξ and λ, but also the average service
rate at Memcached servers µS . With the variation of ξ, λ and µS , E[TS(N)] evolutes regularly according to
Theorem 1.

Fig.8 shows the evaluations of E[TS(N)] in Theorem 1, when ξ respectively takes the value of 0, 0.6, 0.8, λ
varies from 10Kps to 75Kps, and µS = 80Kps. When key arrivals become more burst, E[TS(N)] reaches the cliff
point at a lower λ. When ξ = 0, E[TS(N)] reaches the cliff point when λ is more than 65Kps and ρS is as high as
80%. However, when ξ = 0.6 and 0.8, E[TS(N)] gets to the cliff point when λ are just 45Kps and 30Kps, whose
corresponding ρS are only 55% and 40%, respectively.

Fig.9 illustrates the evaluations of E[TS(N)] in Theorem 1, when ξ = 0, 0.6, 0.8, λ = 62.5Kps and µS varies
from 65Kps to 200Kps. There also exists a cliff point of E[TS(N)] when µS grows to a specific value. And the
more burst keys lead to a higher µS when E[TS(N)] reaches the cliff point. When ξ = 0, E[TS(N)] reduce sharply
when µS varies from 65Kps to 80Kps, but much slower and gently when µS increases more than 90Kps. Thus,
E[TS(N)] reaches the cliff point when µS is about 85Kps and ρS = 80%. Moreover, when ξ = 0.6 and 0.8, the
cliff point of E[TS(N)] is delayed when µS are as high as 110Kps and 160Kps, whose corresponding ρS are only
55% and 40%, respectively.

It is noteworthy that as long as the burst degree ξ remains unchanged, the server utilization ρS at the cliff
point will also keep constant, no matter what value λ takes. Based on (6), we have the following proposition after
some algebraic derivations in Appendix 8.2,

Proposition 2. The processing latency at Memcached servers reaches a cliff point when the Memcached server

12

Table 4: Upper Bound for Server Utilization
ξ ρS(ξ) ξ ρS(ξ) ξ ρS(ξ) ξ ρS(ξ)

0.00 77% 0.25 73% 0.50 65% 0.75 45%
0.05 76% 0.30 72% 0.55 62% 0.80 39%
0.10 76% 0.35 71% 0.60 59% 0.85 31%
0.15 75% 0.40 69% 0.65 55% 0.90 21%
0.20 74% 0.45 67% 0.70 50% 0.95 9%

utilization gets to a specific value. This value is only determined by the burst degree of keys.

This finding provides an upper bound for server utilization when configuring a Memcached system. As listed
in Table 4, we estimate some specific server utilization ρS(ξ) at the cliff point of latency under different burst
degree ξ. To ensure low latency, we recommend that the server utilization ρs should not extend ρS(ξ) if the key
arrivals have a burst degree ξ.

5.2.2 The load distribution among Memcached servers

The load distribution among Memcached servers mainly impacts TS(N), the processing latency at Memcached
servers. We generate a key stream at the rate of Λ = 80Kbps and distribute these keys to each Memcached server.
In the meanwhile, we vary the largest load ratio among Memcached servers p1 from 0.3 to 0.9. And we set the
burst degree ξ = 0.15 and the average service rate at each Memcached server µS = 80Kps. That is, the heaviest
Memcached server has to hold on a load of p1∗Λ and the corresponding server utilization ρS = p1∗Λ

µS
. As illustrated

in Fig.10, the average value of TS is tightly bounded by the estimation of TS(N) in (14).
Apparently, TS(N) reaches a cliff point when p1 = 0.75, i.e. the largest load and the server utilization among

Memcached servers are respectively 60Kps and 75%. This result is consistent with Table 4. Accurately, Proposition
2 is also tenable when the load distribution among Memcached servers is unbalanced.

i) If the largest utilization among all the Memcached servers is lower than ρS(ξ), the processing latencies at
different servers are almost the same. In this case, the load-balancing mechanisms are unnecessary.

ii) On the opposite, once the heaviest load among all the Memcached servers is larger than ρS(ξ), the worst
latency of all servers will become severe. In this case, the load-balancing mechanisms should take effect.

That is, the specific server utilization ρS(ξ) provides a novel guideline for load-balancing mechanisms.

5.2.3 The cache miss ratio

The tiny cache miss ratio r mainly impacts the processing latency at database TD(N). To evaluate such impact,
we vary the cache miss ratio r from 10−4 to 10−1, and record E[TD(N)] under each r value. Fig.11 depict the
experiment results as well as the theoretical value calculated according to Theorem1 . Although there is slight
difference between Theorem1 and experiment results, they present the same trend: i) If an end-user request
generates a small number of Memcached keys, E[TD(N)] grows linearly with the increase of r. ii) If an end-user
request generates abundant Memcached keys, E[TD(N)] grows logarithmically with the increase of r.

Based on the estimation of TD(N) in (23), this complex relationship between TD(N) and r is proved on
Appendix 8.3 and briefly expressed as follows,

E[TD(N)] =

{
Θ(r), if N is small
Θ(log r), if N is large

(25)

This finding can be explained as follows.
i) If there are only a few keys generated from an end-user request, there exists a large probability that there

are no missed keys. In this case, the processing latency at database depends on whether there exist missed keys
to a large extent. Therefore, reducing the cache miss ratio can avoid the large cost of missing and significantly
improve latency.

ii) If there are numerous keys generated from an end-user request, it will be inevitable that there are missed
keys. Thus, the processing latency of database is mainly dependent on how many keys are missed, in which case
reducing the cache miss ratio just avoids missing more keys but can not avoiding the huge cost of missing.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

La
te

n
cy

 (
m

s)

Cache Miss Ratio

Theorem 1
Experiment

N=1
N=1

N=4
N=4

N=10
 N=10

 0

 2

 4

 6

 8

 10

10-4 10-3 10-2 10-1

La
te

n
cy

 (
m

s)

Cache Miss Ratio

Theorem 1
Experiment

 N=102

N=102
N=103

N=103
N=104

N=104

Figure 11: Evolution of E[TD(N)] when the cache miss ratio r varies from 10−4 to 10−1.

 0
 100
 200
 300
 400
 500
 600
 700

100 101 102 103 104

La
te

n
cy

 (
µ

s)

Number of Keys

Theorem 1
Experiment

Figure 12: Evolution of E[TS(N)] when an end-user
request generates 1 ∼ 104 keys.

 0
 2
 4
 6
 8

 10
 12

100 101 102 103 104 105 106
La

te
n
cy

 (
m

s)
Number of Keys

Theorem 1
Experiment

Figure 13: Evolution of E[TD(N)] when an end-user
request generates 1 ∼ 106 keys.

Generally, the number of keys generated from an end-user request is always huge, that is, the latter case is
more common. Therefore, the improvement of latency is only logarithmic with the decrease of cache miss ratio.

5.2.4 The number of keys generated from an end-user request

The number of keys N impacts both the processing latency at Memcached server TS(N) and the processing latency
at database TD(N). As drawn in Fig.12 and Fig.13, the experiment results are exactly matched with Theorem
1 when an end-user request generates 1 ∼ 104 keys. Both E[TS(N)] and E[TD(N)] seem to grow logarithmically
when an end-user request generates more keys.

The logarithmic relationship between TS(N) and N is obvious from the estimation of TS(N) in (14),

E[TS(N)] = Θ(logN)

And the logarithmic relationship between TS(N) and N can be obtained after some derivations on the estimation
of TS(N) in (23).

lim
N→∞

E[TD(N)]

≈ lim
N→∞

1−(1−r)N
µD

∗ ln
(

N∗r
1−(1−r)N + 1

)
= lim

N→∞
1
µD
∗ ln (N ∗ r + 1)

That is,
E[TD(N)] = Θ(logN)

Consequently, we demonstrate that the end-user latency T (N) also grows logarithmically with the increase of N .
Similar results have been proved in previous work [14] for MapReduce.

14

5.3 Insights and Recommendations

This section not only validates that Theorem 1 exactly estimates the latency in Memcached with a large range
of configurations, but also quantitates the impact of each factor on latency in Memcached. The quantitative
understanding further provides useful recommendations for optimizing latency in Memcached.

1) Workload and service rate at Memcached servers. We find that the processing latency in Memcached
servers reaches a cliff point when the Memcached server utilization gets to a specific value. This value is only
determined by the burst degree of keys and typically equals 75% under the Facebook workload. Different from
previous work that improves latency performance by reducing the load [2] and increasing the service rate of
Memcached servers as much as possible [4, 5, 8–11, 17, 18], we recommend the server utilization should not exceed
a specific value to ensure low latency.

2) Load distribution among Memcached servers. We find that the processing latency of Memcached
servers becomes severe when the largest utilization exceeds the specific utilization at the latency cliff point.
Consequently, we recommend the load-balancing mechanisms just to take effect before the largest utilization
extends the specific value.

3) Cache miss ratio and the number of keys per request. We find that only when one end-user request
generates a small number of Memcached keys, the impact of the cache miss ratio is significant. But in the common
case that an end-user request generates numerous Memcached keys, the latency is mainly based on the number
of Memcached keys and the improvement of latency performance is only logarithmic with the decreasing of the
cache miss ratio. At the same time, we also find that the end-user latency grows logarithmically with the increase
of the number of keys per request. Since an end-user request always generates numerous Memcached keys and the
cache miss ratio is always quite tiny, we prefer to recommend drastically minimizing the number of Memcached
keys generated from each end-user request, instead of reducing the tiny cache miss ratio.

6 Conclusions

This paper aims to quantitate the impact of different factors on latency in the Memcached system. We establish
a specific model for Memcached and derive a estimation about the latency. The latency estimation is validated
by sufficient experiments. We find that the main factors that impact latency in Memcached include the workload
pattern and the service rate at Memcached servers, the load distribution among Memcached servers, the cache
miss ratio and the number of Memcached keys. The key insights and recommendations in this paper are twofold:

1) The processing latency at Memcached Servers reaches a cliff point when the server utilization gets to a
specific value, which is negatively related with the burst degree of keys. Under the Facebook workload, the specific
utilization is about 75%. To ensure low latency, we recommend that the Memcached server utilization should keep
below the specific utilization, and load-balancing mechanisms should take effect before and Memcached server
extends the specific utilization.

2) The latency grows logarithmically, when an end-user request generates more Memcached keys or the cache
missing ratio increases. Since an end-user request always generates numerous Memcached keys and the cache miss
ratio is always quite tiny, we prefer to recommend minimizing the number of Memcached keys generated from an
end-user request by a drastic degree to improve latency, rather than reducing the tiny cache miss ratio.

7 Acknowledgments

The authors gratefully acknowledge our shepherd Mr. Anshul Gandhi and the anonymous reviewers for their
constructive comments. This work is supported in part by National High-Tech Research and Development Plan
of China (863 Plan) under Grant No.2015AA020101, National Natural Science Foundation of China (NSFC)
under Grant No.61225011 and No.61502539, Suzhou-Tsinghua Special Project for Leading Innovation, and China
Postdoctoral Science Foundation under Grant No.2015M582344 and No.2016T90761.

15

8 Appendix

8.1 Proof of Proposition 1

Proof. i) Set t1 = (TS1)
k

1
p1

, then {
TS1

(t1) = k
1
p1 ,

TSj
(t1) ≤ 1, j = 2, · · · ,M

(26)

Combing (11) and (26), we have

TS(1)(t1) =

M∏
j=1

[TSj
(t1)]Pj ≤ [TS1

(t1)]P1 = k

Therefore, (TS(1))k ≥ (TS1
)
k

1
p1

.

ii) Set t2 = (TS1)k, then {
TS1

(t2) = k,
TSj (t2) = N

N+1 , j = 2, · · · ,M (27)

Combing (11) and (27), we have

TS(1)(t2) =

M∏
j=1

[TSj
(t2)]Pj ≥

M∏
j=1

[k]pj = k

Therefore, (TS(1)) N
N+1
≤ (TS1)k.

8.2 Proof of Proposition 2

Proof. Supposing that there are two Memcached servers S1 and S2, the request arrival rates on the two servers
are λ1 and λ2 satisfying

λ1 = cλ2

where c is a positive constant. And the inter-arrival gaps TX1
and TX2

follow similar distributions, i.e.

TX1
(t) = TX2

(ct)

If they have the same utilization, i.e. λ1

µS1
= λ2

µS2
, we have

µS1
= cµS2

Consequently, we can calculate δ1 and δ2 according to (6),

δ1 = LTX1
((1− δ1)(1− q)µS1

)

=
∫∞

0
e−(1−δ1)(1−q)µS1

tdTX1(t)

=
∫∞

0
e−(1−δ1)(1−q)cµS2

tdTX2
(ct)

=
∫∞

0
e−(1−δ1)(1−q)µS2

tdTX2
(t)

= LTX2
((1− δ1)(1− q)µS2)

Note that δ2 is the unique solution of
δ = LTX2

((1− δ)(1− q)µS2
)

we have
δ1 = δ2

Consquently, according to (14), we have

E[TS1
(N)] =

1

c
E[TS2

(N)]

Thus, the two servers have similar latency evolutions while the utilization changes and have a same cliff utilization.

16

8.3 Proof of Equation (25)

Proof. 1) If N is small,
E[TD(N)]

≈ 1−(1−r)N
µD

∗ ln
(

N∗r
1−(1−r)N + 1

)
= N∗r+o(r2)

µD
∗ ln

(
1

1+o(r) + 1
)

= Θ(r)

2) If N is large,
E[TD(N)]

≈ lim
N→∞

1−(1−r)N
µD

∗ ln
(

N∗r
1−(1−r)N + 1

)
= lim

N→∞
1
µD
∗ ln (N ∗ r + 1)

= Θ(log(N))

Therefore,

E[TD(N)] =

{
Θ(r), if N is small
Θ(log r), if N is large

References

[1] “Memcached - a distributed memory object caching system.” http://memcached.org/.

[2] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab et al., “Scaling memcache at facebook,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis of a large-scale key-value
store,” in ACM SIGMETRICS Performance Evaluation Review, 2012.

[4] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bár, and Z. István, “Achieving 10gbps line-rate key-value stores
with fpgas,” in Presented as part of the 5th USENIX Workshop on Hot Topics in Cloud Computing, 2013.

[5] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin servers with smart pipes:
designing soc accelerators for memcached,” 2013.

[6] W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. Huang, “Load balancing of heterogeneous workloads
in memcached clusters,” in 9th International Workshop on Feedback Computing (Feedback Computing 14),
2014.

[7] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: scaling performance cliffs in web memory
caches,” in 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), 2016.

[8] N. S. Islam, M. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy, and D. K.
Panda, “High performance rdma-based design of hdfs over infiniband,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, 2012.

[9] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur Rahman, H. Wang, S. Narravula, and D. K. Panda, “Scalable
memcached design for infiniband clusters using hybrid transports,” in Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on, 2012.

[10] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur et al., “Memcached design on high performance rdma capable interconnects,” in 2011 International
Conference on Parallel Processing, 2011.

17

[11] P. Stuedi, A. Trivedi, and B. Metzler, “Wimpy nodes with 10gbe: leveraging one-sided operations in soft-rdma
to boost memcached,” in Presented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC
12), 2012.

[12] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, “Low latency via redundancy,”
in Proceedings of the ninth ACM conference on Emerging networking experiments and technologies, 2013.

[13] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail latency in cloud data stores via adaptive
replica selection,” in 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
2015.

[14] A. Rizk, F. Poloczek, and F. Ciucu, “Computable bounds in fork-join queueing systems,” in ACM SIGMET-
RICS Performance Evaluation Review, 2015.

[15] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia, “Delay, memory, and messaging tradeoffs in distributed
service systems,” in Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science, 2016.

[16] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and sub-millisecond quality-of-service,” in
Proceedings of the Ninth European Conference on Computer Systems, 2014.

[17] A. Wiggins and J. Langston, “Enhancing the scalability of memcached.” http://software.intel.com/en-
us/articles/enhancing-the-scalability-of-memcached, 2012.

[18] “Configuration and deployment guide for memcached on intel architecture.”
https://software.intel.com/sites/default/files/ article/402153/configuration-and-deployment-guide-for-
memcached-on-intel.pdf.

[19] C. Li and A. L. Cox, “Gd-wheel: a cost-aware replacement policy for key-value stores,” in Proceedings of the
Tenth European Conference on Computer Systems, 2015.

[20] L. Cherkasova, Improving WWW proxies performance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories, 1998.

[21] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache: Dynamic cloud caching,” in 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 15), 2015.

[22] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani, T. Karagiannis, A. Rowstron, and T. Talpey,
“Software-defined caching: Managing caches in multi-tenant data centers,” in Proceedings of the Sixth ACM
Symposium on Cloud Computing, 2015.

[23] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson, “Dynamic performance profiling of cloud
caches,” in Proceedings of the ACM Symposium on Cloud Computing, 2014.

[24] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson, “Dynamic performance profiling of cloud
caches,” in Proceedings of the 4th annual Symposium on Cloud Computing, 2013.

[25] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” in Communications of
the ACM, 2008.

[26] “Amazon elastic compute cloud ec2.” http://aws.amazon.com/ec2.

[27] S. Varma and A. M. Makowski, “Interpolation approximations for symmetric fork-join queues,” Performance
Evaluation, 1994.

[28] R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join synchronization in parallel queues,” IEEE
transactions on computers, 1988.

[29] A. S. Lebrecht and W. J. Knottenbelt, “Response time approximations in fork-join queues,” in 23rd UK
Performance Engineering Workshop (UKPEW), 2007.

18

[30] S.-S. Ko and R. F. Serfozo, “Sojourn times in g/m/1 fork-join networks,” Naval Research Logistics (NRL),
2008.

[31] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat, “Chronos: predictable low latency for data
center applications,” in Proceedings of the Third ACM Symposium on Cloud Computing, 2012.

[32] R. Nelson, “Probability, stochastic processes, and queueing theory: the mathematics of computer performance
modeling,” 2013.

[33] J. Medhi, Stochastic models in queueing theory. Academic Press, 2002.

[34] G. Casella and R. L. Berger, Statistical inference, 2002.

[35] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion, “Ix: A protected dataplane
operating system for high throughput and low latency,” in 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), 2014.

[36] “Mutilate: high-performance memcached load generator.” https://github.com/leverich/mutilate.

19

